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ABSTRACT

Following a brief review of phenomenological origins, a comprehensive discussion of the physics
and chemistry of superconducting metallic oxide systems is presented. The real-space covalent electron
transfer (CET) theory, developed in 1987 after the discovery of high-temperature superconductivity
(high-T) in cuprate systems, is based on the premise that superconductivity is created by spontaneous
charge transfer through covalent bonds where large polarons are formed to compensate charge imbalances
in mixed-valence molecular structures. Superconductivity is disrupted by the thermally activated mobility
that causes normal-state conductivity. In this report, the CET theory is expanded to include a molecular-
orbital analysis of the electron transfer probability (assumed to be unity in the original model). An ex-
amination of the local magnetic superexchange interactions between Cu2+-O2--Cu 2+ ions indicates that the

onset of superconduction requires a breakdown in static antiferromagnetic order (the TN, T,7 = 0 condition)
to eliminate the exchange contribution to the polaron trap energy. This spin alignment frustration that
was predicted in the 1987 version of this theory and later confirmed by several experimentalists is
explained by the spontaneous action of mobile polaronic ions in zero-spin states. By comparing the
covalent transfer (superconduction) and electron hopping (normal conduction) mechanisms, two impor-
tant results are obtained. First, the thermal energy at the critical temperature (kT,) may be approximated
by the hopping activation energy (Ehp) magnified by the ratio of the supercarrier concentration (x) at
T = 0 to the threshold concentration (x,) at T = T,, i.e., kT - Ehop(x/xt), where x, << x. Second, a new

two-fluid function is derived for the temperature-dependent population distribution between normal and
superelectrons. From the fraction of carriers that is not thermally activated (hopping), condensation to
the superconducting state occurs in the form of dynamic ferroelectricity with spin wave fluctuations along
chains of ordered polaronic dipoles for which the condensation energy is directly proportional to the
square of the supercarrier population. With this relation, it is then possible to derive direct expressions
between the measurable superconduction parameters and the effective supercarrier density as functions
of temperature. Based on these concepts, computed values of critical temperature, magnetic field, and
supercurrent density, as well as specific heat, penetration depth, coherence length, and microwave surface
resistance compare favorably with measured values, both in magnitude and as functions of temperature.
The reported superconducting properties of the various high-T, systems are then examined in the context
of this new model. To contrast with low-T, metals, the covalent transfer concept is applied qualitatively
to systems with conduction electrons. Finally, the various topics are summarized and conclusions drawn
concerning the limitations and applicability of superconduction phenomena, as interpreted by the CET
theory.

oiii



ACKNOWLEDGMENTS

The author recognizes contributions from the following members of the Lincoln

Laboratory Analog Device Technology Group: Dr. A.C. Anderson, Dr. D.E. Oates, A.C.

Westerheim, L.S. Yu-Jahnes, and Dr. R.S. Withers. Acknowledgments are also extended

to Prof. J.M. Honig of Purdue University for providing information relating to the

nickelate superconductors, Prof. S.M. Aniage of the University of Maryland for providing

data from penetration depth measurements, and Dr. B.S. Ahern of the Rome Laboratory

at L.G. Hanscom Air Force Base for general literature support. Finally, the author is

grateful to Dr. G.N. Tsandoulas, D.H. Temme, and V. Vitto of Lincoln Laboratory for

their encouragement throughout the course of this work.

DTIC QUALm -IL 5

Accession For

NTIS ,RA&I
DTIC TAB ,l
Unannounced 0
Justification

By
Distribution/

Availability CodeS

Avail and/ or
v Dist Special-- 1



TABLE OF CONTENTS

Abstract iii
Acknowledgments v
List of Illustrations ix
List of Tables xv

INTRODUCTION

2. PHENOMENOLOGICAL FOUNDATIONS 5

2.1 The London Equations 5
2.2 The Macroscopic Molecule Concept 7
2.3 Nonlocal Considerations 8

3. THERMALLY ACTIVATED SEMICONDUCTION I1

3.1 Mixed-Valence Orbital Carriers 1I
3.2 Electrostatic/Elastic Trap Energy 15
3.3 Magnetic Exchange Trap Energy 17
3.4 Magnetic Frustration and Zero-Spin Polarons 22
3.5 Superconduction and Zero-Spin Polarons 26

4. MOLECULAR ORBITAL CONDUCTION 31

4.1 Covalent Transfer versus Thermal Hopping 31
4.2 Quantum Mechanical Transfer Efficiency 36
4.3 Large-Polaron Array Concept 39
4.4 Real-Space Electron Pairing and Antiferromagnetism 39
4.5 Polaron Carrier Statistics 41

5. SUPERCONDUCTION ELECTRICAL PHENOMENA 43

5.1 Critical Temperature and Polaron Concentration 43
5.2 Resistivity versus Temperature and Composition 52
5.3 Resistivity of Multiphase Superconductors 58
5.4 Microwave Surface Resistance R. 62

6. SUPERCURRENTS AND MAGNETIC PHENOMENA 65

6.1 Supercurrent Formation and Effective Supercarrier Density nse 65

6.2 Condensation Energy AG 69

vii



TABLE OF CONTENTS (Continued)

6.3 London Penetration Depth L 70
6.4 Thermodynamic Critical Magnetic Field H,. 73
6.5 Specific Heat Discontinuity AC 75
6.6 Critical Current Density ic  77
6.7 Intrinsic Coherence Length 0 81
6.8 Type-l Superconductors 84
6.9 Magnetic Levitation 86

7. LARGE-POLARON SUPERCONDUCTING SYSTEMS 89

7.1 Systems with 3d-2po Bonds 90
7.2 Systems with 6s, 6p-2p Bonds 101
7.3 Systems with 3d-2pn or 3d-3da Bonds 103

8. COVALENT ELECTRON TRANSFER IN METALS 107

8.1 The Goodenough b Parameter Model 107
8.2 Real-Space Pairing in Metals 110
8.3 T. and the W Parameter 112
8.4 The Matthias Model and the Periodic Table 113
8.5 The Isotope Effect 116
8.6 Superconducting Compounds with c - 0 118
8.7 Comparison of Metal and Oxide Superconductors 119

9. SUMMARY AND CONCLUSIONS 123

APPENDIX A. SELF-CONSISTENT MOLECULAR-ORBITAL THEORY 129

APPENDIX B. THE Cu2+O2- MOLECULE 133

APPENDIX C. THE FOUR-BODY (Cu2+O2- ) - (Cu2+O2- ) LINEAR MOLECULE 139

APPENDIX D. OXYGEN-COORDINATION INFLUENCE ON Eh p  143

APPENDIX E. EFFECTIVE AREA OF TYPE-I MAGNETIC FIELD AND
SUPERCURRENT 145

APPENDIX F. THE LOW-SPIN STATES OF Ni CATIONS 147

APPENDIX G. EFFECTIVE DIELECTRIC CONSTANT OF Sn 151

REFERENCES 153

viii



LIST OF ILLUSTRATIONS

Figure
No. Page

I Perpendicular relations between current and magnetic field for superconducting cylinders 6
of large and small diameters.

2 Two types of charge transfer in oxides. 12

3 Origin of polarons in mixed-valence cation systems. 14

4 Ehop versus polaron density for monoxides of Mn, Co, Ni, and Cu. 17

5 Schematic model of elastic and magnetic contributions to the hopping electron activation 20
energy barrier.

6 Two-dimensional model of the intrasublattice passage of a "hole" in an antiferromagnetically 21
ordered lattice.

7 Growth of magnetic frustration from (a) local spin canting caused by magnetic dilution to 24
(b) regions of complete disorder defined by the boundaries of itinerant SP = 0 polarons.

8 Cation sublattice projection of La2 _,Sr.CuO 4 viewed along c axis, with La and Cu ions in 25
alternate planes.

9 Model curve of the decrease in activation energy with the increase in polaron concentration. 26

10 Influence of rare-earth (RE) magnetism on the semiconduction (activation energies) of an 27
(RE) 2CuO 4 series.

I I Schematic diagram of S = 1/2 -+ S = 0 transfers among 3d" group. 29

12 Experimental verification of the magnetic frustration requirement prior to the onset of 30
superconductivity in La2 xSrxCuO 4 and YBa2 Cu3Oy systems.

13 Essential definition of two alternative conduction mechanisms. 32

14 Conceptual description of the formation of a pair of molecular orbital states, and the 33
growth of energy bands from the transfer integral energy b.

15 Pictorial definition of small polaron limit, showing how covalent stabilization overcomes 34
local polaron trap energy (b > Eho)

16 Two-dimensional description of large polaron cells amidst fixed polaron ionic sources. 35

17 Comparison of small and large polaron energies. 37

18 One-dimensional model of a large polaron chain indicating the merger of carrier density 38
functions 4 IS2 to establish a continuous molecular orbital state.

19 Large-polaron Coulomb potential AE . versus y for different reduced polaron source 45
separations r for K = 16.

ix



LIST OF ILLUSTRATIONS (Continued)

Figure
No. Page

20 Transfer efficiency Tl as a function of r/2, for K = 16 and b = 0.43 eV. 46

21 Critical temperature T, versus x for La2_zSrCuO 4, La2 _,SrCaCu20 6, and YBa 2Cu3Oy 49
(where y has been converted to x using the linear model y = 0.25x - 1.5).

22 Supercarrier concentration x,(O) versus x for the La 2_,SrxCuO4 and YBa 2Cu3Qy systems 50
of Figure 21.

23 Comparison of theory with T versus y data from YBa2Cu3Oy. 51

24 Projected TL. versus x curves based on CET theory over the range of 0 <3 < 2 for 52
individual carriers and 0 <3 < I for pairs.

25 Generic plots of p versus T for Ehop = 0 and 10 meV, defining relations for Tmin,  54
asymptote slope apaT I., and intercept pi.

26 Simple model of the segregation of superconducting and normal regions for the purpose 54
of estimating electrical resistivity above the transition temperature.

27 Resistivity versus temperature for 0 < TP - 1, showing the influence of covalent transfer 56
on the lowering of Tmin and pi.

28 Comparison of theory with experiment for the La2  SrxCuO 4 system. 57

29 Comparison of theory with experiment for bulk polycrystalline and oriented film YBa 2Cu30.. 57

30 Proposed phase diagram for the La2_1 SrCuO4 system. 58

31 Cross section of a multiphase insulator/superconductor network. 59

32 Sample resistivity versus temperature plots of a two-phase YBa2Cu3Oy system over the 60
range 0 5f1 1.

33 Theory fit to experiment for Pb2Sr 2(Dy,Ca)Cu30 8 single-crystal (f = 0.65) and 60
Pb2Sr 2(Y,Ca)Cu 30 8 polycrystalline (f= 0.98) specimens.

34 Curves of Figure 32, with p() normalized to p(300). 61

35 p(T)/p(300) versus T curves for the (Tl0 _Bi0.5)(Ca_zY)Sr2Cu2Oy family of mixed-phase 61
superconductors.

36 Comparison of CET calculations and measurements of microwave surface resistance 63
R. versus t for films of YBa2Cu 3O7/LaAIO 3 and Nb.

37 Two-dimensional model of polaron condensation to superconducting state. 66

38 Superconducting polaron distribution and probability contour of the carrier density 66
ns= i ,1l2.



LIST OF ILLUSTRATIONS (Continued)

Figure
No. Page

39 Two-dimensional model of partially condensed supercurrent. 67

40 Pictorial representation of the simultaneous decrease of n.'(T) and the growth of n,(T) as T-+ T,., 68
where n. and n, converge to establish the threshold density for the onset of superconductivity.

41 Comparison of ne(t)Inse(O) versus t for W = 0.5, 1, and 1.76 with the BCS function 71
and with the empirical (I - t4 ) two-fluid function.

42 Comparison of calculated lnrL(t)/XL(t) - 11 versus rl curves with the YBa 2CU3O7/LaAIO 3  72
and YBa2Cu 307/MgO film data for W = 0.5 and 1.

43 Comparison of calculated resonance frequencyfo versus t with YBa2Cu3O7/LaAIO 3  73
stripline resonator data for W = 0.5, 1, and 1.76.

44 Change in Gibbs free energy as a function of H, indicating a decreasing energy available 74
for conversion to the kinetic energy of supercurrent as H -+ Hc-

45 Comparison of HW()IH.(0) versus t for W = 1.76, 2, and the thermodynamic (l-t 2 ) function. 76

46 Generic curves of AC(t)/AC(1) versus t for W = 1 and 1.76, compared with data from 78
Sn and Ga.

47 Normalized critical current density i.(t)/i,(O) versus t for W = 0.5, 1, and 2. 79

48 CET universal plot of i,.(t)Ii,(O) for the bulk case with W = 1. 80

49 Variation of H and W. at the fluxoid/superconductor interface for K << I (type I) and 85
K >> I (type II).

50 CET calculated curve of H .2(t)IH 2(O) versus t for W = 0.8. 85

51 Diagrammatic representation of the Meissner flux expulsion/levitation effect from induced 87
diamagnetism in a superconductor.

52 Generic MO energy level diagram for a do cation in an oxygen octahedral complex. 89

53 Band model approximation of the MO states of a Cu perovskite, indicating a partially 90
filled antibonding band.

54 Crystal-field diagrams for the d8 low-spin (S = 0) state: (a) free ion level as zero-energy 92
reference and (b) least stable d,2y2 level as reference.

55 MO diagram for a tetragonally (D4.) distorted CuO6 complex. 93

56 MO diagram for a square planar (C2) CuO4 complex. 94

57 p-type 3d 2,2-2p a Cu2+-O-Cu3+ covalent transfer in I 80-deg perovskite bond 95
geometry for d9 - d8(low-spin).

xi



LIST OF ILLUSTRATIONS (Continued)

Figure
No. Page

58 Ordered A-layer structure of YBa2Cu3Oy, showing breakdown of CuO 6 complexes 96
as y decreases from 9 (hypothetical in this case).

59 Proposed linear valence model of Cu( I) and Cu(2) as a function of the oxygen content 97
variation and distribution depicted in Figure 58.

60 Nominal Cu valence as determined from linear model of Figure 59 compared with 98
valence bond sum analysis for YBa2Cu30.

61 n-type 3d 2 2 -2p a Cu +-O-Cu2  covalent transfer in 180-deg perovskite bond 100
geometry for d' ° -- d9.

62 n-type 3d:2 -2pyc Ni2 -O-Ni3+ covalent transfer in 180-deg perovskite bond geometry for 101
d8(low spin) -4 d7(low spin).

63 MO diagram for a Bi4 , Pb3+ in an octahedral 02-6 complex. 102

64 Covalent transfer paths for t2,-occupied cations. 104

65 MO diagram for the octahedral Ti3+O2-6 complex t2 ,-2p7E states. 105

66 Variation of resistivity minimum as a function of Ehop.  108

67 Energy band diagram based on Goodenough's c = 0 case of excited charge transfer (AU * 0). 109

68 Conceptual model of the condensation of virtual dipole with S = 0 sites. II

69 W parameter as a function of xt /Xeff with regimes of oxides and metals indicated. Note 113
that linear approximation may apply only to oxides.

70 Matthias empirical function F(n) relating T to the average number n of valence electrons 114
per atom.

71 Superconducting elements in the periodic table. 1 15

72 Dipole arrangements before superconduction condensation. 120

73 Temperature dependence of supercarrier density for values of dispersal parameter. 122

74 Partial historical summary of superconductivity theory development. 123

A-I Definitions of MO bonding A and antibonding A+ states. 129

B-I Crystal-field and covalent contributions to the semiempirical 10 Dq splitting between 134
t2g and e.1 bands.

B-2 CuO molecule approximation to the complete lattice energy E,,,, -43 eV, using a 134
Madelung constant M - 1.5 to represent the effective electrostatic fields that determine
the respective cation and anion energies.

xii



LIST OF ILLUSTRATIONS (Continued)

Figure
No. Page

B-3 Born-Mayer function for CuO, indicating corrected Coulomb attraction curve of Madelung 135
energy to fit the Elati = - 43 eV result.

B-4 Composite energy level diagram for CuO model, combining lattice energy estimates, 136
point-charge crystal field splittings, and MO splittings.

C-1 CuO-CuO two-molecule chain. 140

D-1 Growth of e, doublet splitting as the tetragonal crystal field component incrr 'ses through 144
D4h - C4v - C2h to provide stabilization for the d8 low-spin state.

E- I Effective flux penetration regions for a rectangular cross-section model. 145

F-I Ground state crystal-field orbital occupancy diagrams for d7 and d8 spin states. 148

F-2 Empirical fit of theory to data indicating dual activation energies of LiXNi IxO system. 149

F-3 Effects of Jahn-Teller distortion of Ni 3+ (low spin) octahedral complex. 150

xiii



LIST OF TABLES

Table
No. Page

I Polaron Electrostatic/Elastic Trap Parameters 16

2 Octahedral-Site d' Superexchange Couplings for 180-deg Bonds (High Spin) 18

3 Octahedral-Site d' Superexchange Couplings for 180-deg Bonds (Low Spin) 19

4 Magnetic Trap Energies Emag for z = 6 23

5 Zero-Spin Polarons for Covalent Transfer 28

6 Superconductor Parameter Valt..s and Dependence on Carrier Density 87

7 Cu Perovskite Superconduction Parameters 99

8 Isotope Effect in Superconductors 116

9 Dielectric Data for Ionic Compounds 118

10 Qualitative Comparison of Superconduction Parameters 121

11 Superconduction Pairing Arrangements 127

B-1 (CuO) Ionic Stabilization Energies 138

xv



1. INTRODUCTION

In a recent study of high-temperature superconductivity in transition-metal oxides [I], a theory that
originated from the electrical conduction in the normal state was developed to interpiet the reported
superconduction phenomena as functions of temperature and chemical composititon [2-6]. The motiva-
tion for this first exercise grew from the author's familiarity with the behavior of inhomogeneous and
magnetically dilute ferrimagnetic oxides, to which the newly discovered superconducting perovskites bear
a strong resemblance, through frustration of long-range magnetic order from spin canting and electron
conduction associated with mixed cation valence. In contrast to the microscopically uniform structure
of elemental superconductors, which can be analyzed by standard periodic-lattice band theory, the complex
multication perovskites are not only superconductors in spite of their inhomogeneities, but because of
them. Another marked difference from the low temperature systems is that the carriers are not drawn
from a free electron gas, but rather exist as orbitally bound electrons with transport determined in its
simplest form by the thermally activated charge transfer process called hopping. Consequently, the
covalent chemical bond, so often ignored in the physics of metals, emerged as the most probable avenue
of electron transport in accord with the macroscopic molecule concept that flows from the phenomenology
of the London theory.

To account for the observed effects of systematic chemical substitutions in the oxide compounds,
the problems had to be worked out in real space. In contrast to the conventional many-body approach,
the charge carriers were treated as isolated polarons created by the specific nature of the formal ionic
valence states. The theory, therefore, began with the following premise: If electrical resistance results
from collisions of free electrons with phonons, then superconduction does not involve free electrons, but
rather valence electrons bound in orbital states and affected by phonons indirectly through a statistically
limited activation process. As a result, the occurrence of the superconducting state over the normal state
would arise from competition between two conduction mechanisms, (i) transfer of covalent electrons
through orbital overlaps that create a stabilization energy proportional to the transfer integral b, inde-
pendent of electron-lattice coupling, and (2) electron hopping limited by an activation energy Ehop. Because
the spatial order of the electrons in the superconducting state is destroyed by random thermally activated
hopping, therefore, an analysis of the critical temperature T, revealed a direct dependence on the
magnitude of Ehop; because the superconducting state evolves from orbital transfer through spatially
ordered mobile polarons formed from mixed-valence ions occupying similar lattice sites, dispersal of
polaron sources (fixed-valence cations and/or anion vacancies) was shown to have an important influence
on T..

Covalent conduction can emerge from the notion of a Mott insulator, where the overlapping of
localized states causes the removal of energy gaps to form a collective electron system. This concept led
to Goodenough's model [7] of orbital interaction that included both single and mixed valences, in which

the magnitude of the covalent transfer integral b was used as a measure of the relative degree of localized
and collective conduction likely for a particular system. In the initial version of the covalent electron
transfer (CET) theory [I], the focus was on the mixed-valence case, for which a phenomenological theory
derived from the above concepts was applied to critical temperature and normal resistivity data of the
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La2 .,SrCuO4 , YBa2 Cu 3OY, and Bi 2Sr 2CaCu20 8 perovskite-related systems that involve Cu 2+-O 2 -- Cu3 +

(low-spin, S = 0) cation-anion-cation transfers in 180-deg configurations.

For the likely case of antiferromagnetic coupling, electron hopping occurs between sites of the
same sublattice, i.e., hops of two metal-oxygen bond lengths to satisfy the selection rule AS = 0 of
maintaining parallel spin alignments; for CET, adjustments in local spin directions (causing spin wave
fluctuations) require double electron transfers that represent electron pairing in real space. In practical
terms, the effect of this pairing would be to double the size of the smallest current entity, a result that
would account for the factor of 2 that appears to modify the electronic charge in flux quantization and
quasi-particle tunneling experiments. Apart from the Bardeen-Cooper-Schrieffer (BCS) theory require-
ment [8] of k-space pair correlation dependence on phonons, both theories are similar in their relation to
lattice thermal energy; the BCS theory is based on pairs that condense into an ordered superconducting
state below the thermal energy of a threshold "gap," while the supercarriers of the CET correlate for
thermal energies less than the "trap" energy (Ehop). There is no requirement for phonons to exist as T
-- 0 K in the CET theory.

In this report, the original model that was developed from the covalent transfer concept is first
refined and then applied to interpret a broader spectrum of superconductor behavior. Initially, traditional
superconduction phenomenology relevant to the new theory is reviewed in Section 2. For testing
compatibility with the CET theory, the London theory is examined in the context of giant molecular
wavefunctions that automatically result from the requirement of spatially ordered carriers (the classical
basis for the coherent wavefunction concept of a boson fluid used in quantum mechanical theory).

From analyses of the magnetic couplings in Section 3, the main contribution to Eh. is attributed
to antiferromagnetic exchange, which becomes diluted with increasing density of zero-spin polarons,
leaving only the small electrostatic contribution associated with the local electrostatic/elastic distortion.
For this reason, superconduction arises from an ionic/covalent bonding duality. With only ionic bonding,
there is no covalent transfer, with both types of bonding, hopping and covalent transfer coexist, and
supercurrents can form where the probability of covalent transfer reaches a minimum threshold.

In Section 4 the original crystal-field approach that was applied to the layered cuprates is placed
in the more general context of molecular-orbital (MO) theory that allows the orbital transfer efficiency
to be defined in quantum mechanical terms. With the conduction perceived as originating from isolated
dipoles, e.g., (LaSr)--(CuO) +, the (CuO)+ molecular ion becomes the mobile polaron in p-type compo-
sitions. To this end, a calculation based on self-consistent perturbation theory is carried out to determine
the transfer wavefunction and to arrive at an estimate of the orbital transfer integral energy b for the CuO-
CuO molecule. For the lattice energy parameters chosen in the calculation, the MO state in which the
"hole" carier would reside is dominated by the Cu d2 2 orbital, and the polarnm would be mainly Cu3+O2-,
with Cu3+ in a low-spin S = 0 state. A different set o lattice energies could place the hole in the oxygen
lattice, a peroxide polaron Cu2+O1- , with the S M 112 spins of both Cu2+(T) and 0'-(4.) in opposition to

form a net S = 0.

In Section 5 the effects of the b-dependent transfer efficiency and large-polaron cell radii are then
woven into the original phenomenological model used to compute critical temperature as functions of
Ehop and effective polaron density. The parameter values determined by matching theory to experiment

2



are then used to compute (as functions of temperature) the normal electrical conductivity of multiphase
superconductors and the microwave surface resistance of high quality superconducting films.

Because the percolation of polaron cells is a necessary condition for superconduction in Section 6.
the condensation to the superconducting state is defined as the alignment of polaron dipoles into dynamic
chains in which the Gibbs free energy is converted to the energy of the supercurrent. The dipolar
condensation is analogous to the spontaneous occurrence of ferroelectricity (or ferromagnetism), except
that energy release associated with electrocaloric or magnetocaloric effects is converted into kinetic
energy - dynamic ferroelectricity with associated spin waves. Based on comparisons with reported
experimental findings, all specific results from this work are shown to be dependent on the density of
supercarriers, including the derivation of expressions for critical magnetic field and current; their variation
with temperature, including their favorable comparison with experiment; the determination of coherence
lengths and penetration depths and their relation to each other; the theory of type-II superconductors,
including an examination of the source and rigidity of the fluxoid lattice; and the mechanical aspects of
the Meissner flux-exclusion phenomenon.

On the basis of these theory refinements, the properties of high temperature superconducting
perovskites are examined in Section 7 through comparisons with experimental results. The discussion
of orbital transfer superconduction is also extended to include lower temperature oxide superconductors,
including LiTi20 4 spinel and the nontransition-metal Bi and Pb perovskites (e.g., BaBiPb i-,O3).

Section 8 examines the implications of the CET mechanism in the case of metals based on the
speculation that before superconduction can occur, they "condense" to an insulating state through delo-
calized electrons returning to their parent ions. In this context, some standard topics are discussed, such
as the isotope effect and the correlation of superconduction properties to element groups of the periodic
table. The origins of superconductivity in metals and oxides are compared with the focus on the reasons
for the exaggerated Tc values of the polaronic cuprates. Finally, a figure-of-merit temperature that is
proportional to the activation energy is proposed as a basis for comparing the effectiveness of supercon-
ductors.

In Section 9, the essential features of the CET theory are summarized and conclusions are made.
The fundamental tenet is repeated: Superconductivity is a natural state at low temperatures; the thermal
activation that destroys the ordered carrier state becomes the source of the mobility-limited carriers of the
normal conductivity at higher temperatures.

Since the original report [I] discussing CET was published, a number of theoretical results from
that work have been confirmed by experiment. These include:

- The prediction that high-Tc superconductivity with electron carriers (n-type) would be possible
with d10 -+ d9 cation transfer combinations, which was discovered in Nd 2 4CexCuO4_y, as dis-
cussed in Section 7.

- The conclusion that long-range static antiferromagnetic order would have to break down before
the superconducting state could be established, which was subsequently verified by Nel temperature
measurements.

3



" The result from the preliminary theoretical model for critical current density that indicated an
early fall off and tail as a function of temperature that has now been established by many
experiments.

" The accurate prediction of microwave surface resistance measurement results over the complete
temperature range by means of a normal electron hopping conduction model.

Background to this research has been drawn from the works of J.B. Goodenough on the subject of
electrical conduction in metal oxides, from P.W. Anderson and Goodenough on the principles of mag-
netic superexchange, from R.R. Heikes, W.D. Johnston, and P.-G. de Gennes on the hopping conduction
in mixed-valence oxides, and from J.H. Van Vleck, L.G. Orgel, and C.J. Ballhausen on matters pertaining
to crystal-field and MO theory. On the specific subject of superconductivity, several excellent reference
texts were consulted by authors who include F. London, M. Tinkham, C. Kittel, D. Schoenberg,
J.M. Blatt, and J.R. Schrieffer.
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2. PHENOMENOLOGICAL FOUNDATIONS

To relate the mechanism of the covalent electron transfer theory to traditional superconductor
phenomenology, it is first necessary to review the basic macroscopic concepts on which any microscopic
theory must be founded.

2.1. THE LONDON EQUATIONS

The magnetic flux density B must be constant to satisfy Faraday's law V X E = - (I /c)aB/kt, because
the electric field E = 0 in a hypothetical perfect conductor. For this reason, such a material would also
be described as a perfect magnetic shield. An unchanging value of B, however, is not a sufficient
condition for superconduction, because the Meissner effect requires the expulsion of flux from the interior
of the specimen as it becomes superconducting, i.e., B -- 0. When an external field H is removed from
a normal conductor that might have attained a zero resistance state, the existing B would be sustained
(flux trapping) by induced surface eddy currents. It follows, therefore, that a superconductor differs from
a normal "perfect" conductor by the manner in which currents induced by changes in H are somehow
constrained to ensure the B = 0 condition.

Because superconducting materials are never spontaneously magnetic, B - H = 0 (i.e., permeability
1 ~). It follows from the Maxwell equation of magnetic induction V X H = - (4n/c)i s that the current

density is is also zero in the interior, where B = 0, that the current must exist only at the surface, and
that the material behaves as a perfect diamagnet with is inducing a field exactly equal and opposite to
H. It is clear from inspection that Faraday's law alone cannot account for the E = B = 0 condition. To
describe these phenomena London [9] devised two relations to augment the Maxwell equations:

E = (4x1)L 2/c2) (aiIat) , (la)

and
H = -(4nXL2/c) (V X i,) (Ib)

where the London penetration depth XL = (mc 2/4ixe 2n,)'f2 is a constant inversely dependent on the square
root of carrier density ns, with m and e as the electron mass and charge, respectively. In a more general

context, m would be treated as the effective mass m, t but this refinement will not enter the discussions
or calculations throughout this work. For a stationary state, ai/At = 0, and Equation (la) fulfills the E
= 0 requirement. If Equation (Ib) is then combined with V X H = - (47rlc)i s, the following differential
equations emerge, provided that V.H = 0 and V-is = 0:1

V2H = HL 2

and
V1= i ,2  (2)

The solutions of Equation (2) yield H and i, as exponential functions of distance x from the specimen

surface, e.g., H = H0 exp(-x/;LL); therefore, both H and is are maxima at the surface and decay inward with

It is necessary to use the vector identity. V x (V x V) =V(V-V)- V2V =-V 2V, with V.V = 0.
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a profile characterized by London penetration depth XL. If flux and current are expelled from the interior of
the material from B = E = 0 conditions, they coexist in surface layers of depth XL as solenoidal vectors normal
to each other, i.e., V.H = 0, V-i = 0, and may be illustrated by the simple geometries of Figure 1.

140. 1- -d

d

isH

X I PENETRATION DEPTH

d

HH

S s

Figure ). Perpendicular relations between current and magnetic field for superconducting cylinders of large and
small diameters. In the upper cases, the current responds to an applied external field within a depth XL, and in
the lower ones the field is generated to a depth AL by a current passed through the superconductor. For the thin
cylinders where AL d, the penetration can be almost complete.

6



A more useful relation is the interdependence of i and H in a superconducting environment, where

E = 0. Because V-H = 0, H may also be defined in terms of the magnetic vector potential according to
H = V X A, and it follows from Equation (I b) that

= - C(4)XL 2) A
or

= -(e21mc) nA (3)

which is a relation analagously referred to as the "Ohm's law of superconductivity," where the supercurrent
is controlled by magnetic instead of electric fields. It should be noted that Equation (3) is not gauge invariant,
and that a further constraint must be placed on A for application of this relation to specific phenomenology.
In the most general case of simply connected superconductors, the London gauge V -A = 0 is chosen to conform
to the Vi 5 = 0 condition that defines the observed supercurrent rigidity, i.e., no current components normal
to surface.

2.2 THE MACROSCOPIC MOLECULE CONCEPT

A more fundamental physical derivation of Equation (3) may be obtained from classical electrodynamics,
where the mean local canonical momentum of individual carriers (p) = m(v) + (e/c)A, with (v) as the local
mean carrier velocity. Statistical mechanics dictates that (v) = 0 in a normal conductor, therefore it follows
that (p) = (elc)A in the normal state. For a superconducting ground state, however, a Bloch theorem [10]
concluded that (p) = 0, implying a certain rigidity or inability of the momentum to respond to H, therefore
establishing that (P) = (elmc)A. For a chain of ordered carriers of number density n., it follows that the
supercurrent density i = - nse(v) = - (nse2lmc)A, thereby producing an alternate derivation of Equation (3).

For this electrodynamic approach to comply totally with the constraints of the phenomenological result that
V-i = 0, it is not only necessary that the gauge condition V-A = 0 apply, but also that Vn s = 0.2 Therefore,
the basis for describing the supercurrent as spatially rigid, i.e., the (p) = 0 condition, must include the condition
that the distribution of carriers be uniform (ordered) along the current path.

The notion of spatially ordered carriers is not readily applicable to a free-electron gas. Because the first
superconductors were metals, a quantum mechanical alternative to this classical concept evolved from the
nonlocal ideas of Pippard [ I I ], i.e., the analogy of supercarrier coherence length E to normal carrier mean-
free-path, giving rise to the Ginsburg-Landau [ 121 ensemble-average wavefunction WS, which in turn is related
to the supercurrent electron density by the standard expectation value relation

I v, I2 = n, (4)

2 Recall that V-i = (e2/mc) (n.V'A + A -Vn ) and for V-i = 0, both V.A and Vn, = 0. This latter condition is

not only necessary for supercurrent rigidity in the classical argument but also sufficient, because a carrier

distribution dynamically ordered in real space is a rigid current by definition. In effect it should be considered
the fundamental physical requirement for the applicability of Equation (3) to superconductivity.

7



where the number density n, now represents the instantaneous probability of a supercarrier existing at a

position vector r. As a result, Equation (3) may be written as

i = - (e 21mc) I Ws 12 A , (5)

with the attendant implication that VW, = 0 to satisfy the condition that Vns = 0.

Four important conclusions are deduced from this wavefunction rigidity concept:

- The current density vector i is directly and exclusively controlled by the magnetic field through the

vector potential A.

- The eigenstate of the supercurrent has the properties of a space-invariant wavefunction with zero
average mechanical momentum ((p) = VW = 0).

- The resulting spatial invariance of the carrier density n. implies ordered or equispaced

supercarriers.

* Superelectrons cannot be part of the normal free-electron gas.

If the carriers have similar quantum states that may be described in terms of a single giant MO

wavefunction, the current rigidity imposed by the fixed wavefunction provides an immediate explanation

for the absence of eddy currents and the presence of flux trapping in the superconducting state.

2.3 NONLOCAL CONSIDERATIONS

In a manner similar to the nonlocal arena of normal electrons that move independently within the range

of a mean-free-path f, Pippard [ I I] suggested that a sphere of radius E be considered as a nonlocal region

in which each-superelectron would exist within the correlation scheme. For normal conduction, Iis the average

distance that an electron can be transported without scattering; for superconduction, 0 is the average distance
that a superelectron can remain in coherence with the ensemble as part of the giant molecular state. As

examined in Section 6.7, the coherence length t may be estimated from the uncertainty principal once a value

for momentum p, is determined.

Ginsburg and Landau [12] reasoned that because wavepackets have a spatial profile, the coherence

length could be readily introduced through a generalized form of V with an exponential decay and proposed

a solution of a Schrodinger-type equation with

V,(r) - V,(0) exp(-r/) , (6)

where , is a more generalized coherence length. In this context, , represents the smallest size of wavepackets

that the superconducting charge carriers can form. In a context more appropriate to the discussions that follow,

the gradient of the superconduction carrier number density wavefunction may be expressed as

Vn, - (2/4)1#I 2 - (2t)n. (7)

As - go, Vn s -. 0, to approach the condition for spatial ordering of carriers.
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In band-theoretical terms that have been applied to conventional metal superconductors, an intrinsic
coherence length EO - (hl2x)vFlkT. is defined in terms of the Fermi velocity vF and superconduction critical
temperature T. A more general definition was pointed out by Pippard for materials where the coherence

C

length is reduced by impurities that limit the electron mean-free-path e, according to 1/9 = I + I Ie. As a
consequence, superconductors may be categorized as:

Class 1. Type-I pure superconductors with large 0 >> XL that require a full nonlocal theory treatment
(Pippard superconductors)

Class 2. Impure superconductors with - f that are controlled by the mean-free-path (London limit,
where 4 < o )

Class 3. Pure superconductors with << XL.
For Class 2, Equation (3) is modified to read i = - (n e2/mc) (V0)A, where 3 < only for Class 3 is

Equation (3) valid as stated. In practice, Classes 2 and 3 are type-II superconductors, the former resulting from
impurities and the latter representing the case of small intrinsic coherence length, which is the focus of this
report.

In Section 6 the ratio K = XL is shown to be effectively constant with temperature. In physical terms,
the ideal type-I superconductor features K << I with 0- and XL - + 0; in the opposite extreme, the mag-
nitudes of these quantities reverse, K >> 1, with -* 0 and XL -* - in the natural type-II case (Class 3). The
essential point is that the coherence length represents a measure of the wavefunction uniformity; it is the
quantum mechanical equivalent of the spatially ordered carrier concept of the classical London theory, which
will be examined further in the context of CET.
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3. THERMALLY ACTIVATF D SEMICONDUCTION

As described in an earlier report [ I ], electrical properties of insulating oxides may be approached from
either a localized extreme, where the carriers are bound to their sites in a largely ionic bonding scheme, or from
the collective carrier extreme that implies sufficient covalent bonding to warrant the consideration of energy
bands. From Section 2, it is apparent that the giant molecular system described by the Londons must involve
a dual character that includes both a quasi-discrete energy level structure (narrow bands from tight binding)
and covalent bonding to permit the formation of a continuous chain. As a result, it is logical to begin with the
localized case and then add covalent effects as an inc reasing perturbation.

Where a fixed impurity ion or defect is present at a lattice site, the charge imbalance may be compensated
by an electron (or hole) induced on a neighboring site. This charge forms the opposite half of a dipole and
is, therefore, coupled electrostatically to the fixed charge. As part of the local lattice accommodation it is also
trapped in its site by a deformation of its surroundings. Because it is mobile through thermal activation, the
charge with its trap is a polaron; where the trap involves magnetic exchange stabilization, the polaron may
be described as magnetic. The significance of the polaron concept in superconductivity is that it represents
the source of electrical conduction for bound electrons. A general theory of polarons has been outlined by
Fr6hlich [13]. More relevant to the current work, however, is the molecular-crystal model developed by
Holstein [141, where two polaron extremes were defined: a small polaron, in which the carrier is localized
within a lattice parameterof the polaron source, and a large polaron, which can become itinerant within several
lattice parameters radius surrounding its fixed source. In both cases, however, thermally activated electron
hopping is a principal cause of conduction.

Semiconduction in metal oxides, therefore, represents the intermediate coupling (large polaron) regime
that interfaces between the purely localized (small polaron) and the fully collective situation usually
interpreted by band theory. In the analyses to follow, the large polaron case will be explored with the
assumption that the band is narrow enough to be approximated by the individual molecular orbital states. For
the purpose at hand, the chemical origins and physical phenomena associated with large itinerant polarons will
be examined first.

3.1 MIXED-VALENCE ORBITAL CARRIERS

Of the two situations where bound electrons transfer between similar sites, one is a general case that is
illustrated in Figure 2(a) (from Tilley [ 151), consisting of transfer between similar ions M"' that creates two
different ions Mk ' " and M ( " ) >of the same element and requires a net energy expense (excitation) according
to the relation

2M" M-> ,..-n + ,R') - AU , (8)

where AU is the net transfer energy required, closely related to the algebraic sum of the ionization potentials
(corrected for screening effects of the lattice) and typically measuring several electron volts.
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The other case and the mechanism of interest in this report was postulated originally by Verwey

[161 for the Lil+xNi2+,_2xNi3+XO system 3 and examined by Zener [17] and de Gennes [18], is a special
case of Equation (8) that involves the transfer of an electron between different ions of the same element
(i.e., a mixed-valence situation that creates a polaron), according to

M n.* Men + e+ + (9)

14539t 48$

2)0000

0000(900
(a)

Figure 2. Two types of charge transfer in oxides: (a) excitation (> I eV) in the uniform valence case where the
electron transfer creates two "new" ions M"- ) + and AOR+' )+ requiring energy AU, and () activation (< I eV)
occurring with mixed-valence cations, where the transfer causes only a change in carrier location.

'The LiI* ion acts as an acceptor relative to the divalent cation lattice to create a p-type hopping semicon-
ductor. Because metal ions are normally less stable than filled-shell 0 2- anions in the ionic lattice, the elec-
trons are removed from the Ni2+ rather than the 02-.
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The initial and final energy states of the system are unchanged (AU = 0) because the two sites are

equivalent; only the participating ions have exchanged positions in the lattice, as shown in Figure 2(b), and
only one band (usually narrow) is required to describe the conduction states. For unequal populations of M "'

and 0 n )+, the minority ion is the mobile half of a dipole electrostatically coupled to a fixed source with its

ratio to the total population of its particular sublattice indicated by 0:< x < 0.5. (If x > 0.5, the other ion will
be the mobile half and will be designated as the polaron, either n orp type, depending on the sign of its charge.)
Where x is small, the carrier states are localized as individual energy levels in the manner suggested by

Goodenough [7].

The occurrence of mixed valence is restricted to a select group of ions, particularly those of the d" series
transition elements. There are two common situations of mixed-valence cations in a crystal lattice: (1) where
the natural stoichiometry calls for a nonintegral average valence in a cation sublattice (e.g., Fe30 4' Mn 30 4),
and (2) where a mixture of fixed-valence ions or lattice vacancies force a variation in cation valence within

a sublattice to preserve stoichiometry (e.g., the magnetically altered ferrimagnetic spinels and garnets [ 19]).

Where mixed valence exists, the imbalance in the numbers of the two valence states determines whether

the conductivity is n orp type. In the example presented in Figure 3(a), where Sr 2+ ions are substituted for
La' + in the La3+ Sr 2 A Cu2  ICu 3+ 0 system, an equal number of Cu3+ ions must be created to reestablish
electrostatic neutrality. Because theS ions occupy a minority of the A sublattice dominated by La3 , they

represent isolated sites of fixed negative charges; the corresponding Cu3+ ions, however, represent positive
charges in the B sublattice, i.e., the other halves of the dipoles formed with the Sr2+ polaron sources, and will
occur in closest proximity to the Sr2+ site to reduce the Madelung energy. Moreover, the Cu3+ ion can occupy
with equal probability any of four geometrically equivalent sites around the Sr 2+ ion in this particular lattice,

and the positively charged hole carrier associated with the Cu3+ ion can move between them through the
thermally activated mobility mechanism. With the application of an external electric field, the hole can move

away from the Sr2  negative charge, extending the dipole and increasing the energy. For this reason, the hole
is considered to be tethered to a fixed negative source (Sr2+)-, and the conductivity isp-type because the polaron
is positively charged. In Figure 3(b), the case of a negative polaron that would give rise to n-type conduction
is shown. Instead of Sr2 , the fixed-valence ion is tetravalent, e.g., Ce4 orPr , representing a positive charge,
and the mobile ion then becomes Cu 1+, representing a negative polaron and providing an n-type conductivity.

Thermally activated electron hopping is a form of conduction that is peculiar to metal oxides with cations
of mixed (dual) valence. Because conductivity increases with temperature for thermal energies below the

level of activation, it is described by a relation similar to the familiar law of diffusion [15,20,21],

a = Ne 11(7) = Ne (eDIkT) exp(-E h"/kT) , (10)

4The assignment of the 3+ charge to Cu in the (CuO4)* ion emerges from the MO analysis carried out

in Appendices A, B, and C. In polaron notation the chemical formula La3+2x Sr2+ CU2 _XCu3+x 04 becomes

(La 3 2 -Sr2 xCuO 4 1
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where N is the total number o: carriers, j±T) is the thermally activated mobility, D is the diffusion constant,
and Ehop is the activation energy. The polaron ion harbors a trapped carrier that is isolated from other carriers
by the average polaron separation distance; the conduction is intrinsically local and is treated as such
theoretically.

Conductivity as expressed by Equation (10) resembles that of band semiconductors, where an exponen-
tial factor also controls the carrier density n. For the case of a degenerate semiconductor with large impur-
ity density Ni >> n and impurity ionization energy E. much smaller than the gap energy, n(7) - N73/4
exp(-E/kT), with the mobility influenced by temperature as determined from standard conductivity theory
pT)~ T3- 2, yielding a resu it similar to Equation (10) if E = EhoP. with C - lCF 7,314 exp(-Ehop/kT). In the limit
as T -+ 0, however, excite J carrier density n --- 0, thereby eliminating any possibility of spontaneous con-
duction by an alternate m,,chanism. At extreme doping levels, however, one is tempted to speculate on the
possibility that tunneling between impurity sites may provide such a temperature-independent conduction
mechanism. The p-type .ompound AIGe. , for example, has T = 1.75 K.

3.2 ELECTROSTATiC/ELASTIC TRAP ENERGY

The magnitude of E ho involves a combination of several factors, most of which can be treated only
hop

semiempirically. In physical terms, it is the polaron trap energy (the stabilization energy difference between
the two valence states in the lattice) with a basic contribution Eel that arises from the electrostatic coupling
between cation ligands. Among the effects that contribute toE e are the ionization potential (electronegativity)
differences, the MO mnd crystal-field stabilization energies, and the compensating effects of lattice elastic
strains that occur spontaneously around the carrier site, e.g., static Jahn-Teller effects in Cu2+ and Ni3+ (low

spin), or through physical accommodation for differing ion sizes and valences in mixed-cation systems.

From considerations of lattice electrostatic energy minimization, the attractive potential of the polaron
ion to its source represents a major energy-compensating influence that will be optimized by keeping the
effective dipole separation as small as possible. Hence, there emerges the concept of the polaron tethered to
its source by the Coulomb inverse square law. Extending the general rule that local energy differences will
tend to be minimized, one would expect site stabilization energy differences of electrostatic origin to be
reduced through lattice elastic adjustments. For this reason, measured activation energies are small in
comparison with the electronegativity and other energies that make a contribution to the overall stabilization.

The transport of electrons trapped in a crystal lattice evolves from polaron theory, and the reader is
encouraged to consult standard articles [13,22,23]. For the purpose at hand, however, it is sufficent to
recognize that a carrier created by the mixed-valence condition is indeed a polaron (defined as the mobile
charge and its surrounding cloud of optical phonons) and that the weak-coupling solution for the polaron
ground state may be used to describe Eei according to the relation [ 13].

E- , (/2) (hvD) , (l )

where the coupling constant5 c is expected to be less than unity for 3d-series oxides (see selected examples
in Table 1 [23] where cx is also seen to decrease with the amount of covalence or polarizability), and vD is the

5 The magnitude of this dimensionless constant is related to the density of the phonon cloud surrounding the

trapped carrier and is, in general, inversely proportional to the dielectric constant, as discussed in Section 8.5.
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maximum phonon (Debye) frequency - 1013 Hz, yielding a Debye energy hv) - 40 meV. For the oxides,

Eci would typically fall below 100 meV, and for the superconducting Cu perovskites that feature e orbital
covalence, E1 can fall below 10 meV. For metals, where screening by conduction electrons causes local

dielectric constants to become large to the point of being undefined, a and consequently E.l would be sub-
stantially smaller.6 In anticipation of the theoretical development to follow, note that a qualitative correlation
appears to exist between El and the superconduction critical temperature T; in both cases the highest values
tend to occur for materials with the lowest normal conductivity.

TABLE 1

Polaron Electrostatic/Elastic Trap Parametersa

Ionic Ionic Ionic Mixed d-p Mixed s-p Covalent s-pp

Compound LiF AgCI ZnO CuOb PbS GaAs

K 9.3 12.3 8.5 15 to 20c 17.9 13.5

VD(X 1013 Hz) 2 0.5 2 0.5 1

a 5.2 1.7 0.85 <1 (est) 0.16 0.06

hvD(meV) 81 24 83 18 3

E., (meV)d 210 20 36 (3)6 1.5 1

a Derived (except for CuO) from tabulated data in Brown [23], Table 1.

b With d-p covalence through the e2.2 orbital in a 180-deg Cu-O-Cu bond, it is reasonable for

CuO to fall in the regime of at least moderate covalence for this particular orbit.
c For Cu2 O3 , K = 18.1 (Handbook of Physics and Chemistry, CRC Press, 62nd Ed.).

d Calculated from (J2)hv D.

0 Measured as Eh. in Goodenough et al. [24].

6 It is appropriate to recall the approximation often used to estimate potentials of impurity atoms in

semiconductor hosts,

E. - 27c2mZ2e4/K 2h2

which represents the expression for the ionization potential of a hydrogen atom (Z = 1) with the Coulomb field

reduced by the square of the host dielectric constant.
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To calculate accurately Ehop for a particular situation is a formidable task. A more reasonable approach

to gaining insight about its relative magnitude in transition metal oxides may begin with the experimental

observation that the activation energies are typically 0. 1 to I eV at low polaron concentrations, as evidenced

in the data of Heikes and Johnston [20] shown in Figure 4. Because this range of values is substantially larger

than the energies expected for pure elastic stabilization in metal oxides, an additional contribution from

magnetic exchange must be considered.
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Figure 4. E,,, versus polaron density for monoxides of Mn, Co, Ni, and Cu (from Heikes and Johnston [20)).

3.3 MAGNETIC EXCHANGE TRAP ENERGY

According to Goodenough's qualitative summary for I 80-deg superexchange [25] presented in Tables

2 and 3, all the couplings for the 3d" transition series e -occupied ions relevant to this investigation favor

antiferromagnetic alignment. If one begins with the premise that at least partial short-range antiferromagnetic

order is always present, particularly between the polaron ion of spin Sp and its neighboring lattice ions of spin

SL, the trap boundaries are formed by lattice spins of opposite polarity. Under these conditions a basic

magnetic contribution to the activation energy emerges: The transfer electron will be destabilized internally

on its new site because its spin direction opposes the existing net spin alignment. If the transfer ions are in

turn coupled antiferromagnetically to the molecular field from the surrounding neighbors, the transferred

electron spin causes an additional destabilization through its coupling to this external exchange field. It must

be concluded, therefore, that as long as antiparallel spin alignments are ordered in two distinct sublattices, the

energies between initial and final states of intersublattice transfers are unequal by a magnetic exchange energy
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TABLE 2

Octshdral-Site d"Superexchange Couplings for 180-dog Bonds (High Spin)
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TABLE 3
Octahedral-Site dn Supemrxchange Couplings for 180-deg Bonds (Low Spin)
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S = STRONG; M = MODERATE; W = WEAK; - = QUASI-STATIC

E . According to de Gennes [ 18], energy-conserved transfers must take place within the same sublattice,
andsuch events can occur through electron hops between next-nearest neighbors over a barrier of energy

Eho = El + Era , (12)

depicted in the rectangular barrier model of Figure 5.
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1,1.

Figure 5. Schematic model of elastic and magnetic contributions to the hopping electron activation energy barrier.

For the energy-conserved transfer of Sp to a site two lattice lengths away, the two electrons of the SL
ions form a pair that creates a moving spin fluctuation as they reverse their spin directions to satisfy an internal
exchange requirement - Hund's rule for maximum S in the case of a half-filled/empty orbital combination

or the Pauli principle in the case of a filled/half-filled combination. (An alternative way of describing how
this AS = 0 selection rule is satisfied is that one electron moves in two consecutive steps, temporarily
occupying the empty state of the intermediate ion.) To analyze the energy of electron transfer between next-
nearest-neighbor ions in an antiferromnagnetically aligned lattice, consider the virtual process depicted in
Figure 6, where SL. = Sp + 1/2 and SL' = Sp- 1/2 represent the condition of maximum energy prior to spin
reversals. This case discusses the problem of a hole polaron in ap-type hopping semiconductor, but the rationale
would apply equally well to an electron poharo in an n-type material). If E., is assumed to be equivalent
to the energy required for the passage of a polaron Sp, directly throgh the opposing sublattice, the exchange
interactions associated with a basic three-ion chain must be examined. After summing each of the individual
exchange terms 2JSi - S, between six next-nearest neighbors7 i and j linked by ! 80-deg M-O-M bonds among
the three ion sites involved, and then subtracting the total energies of the initial (SPT' - SL.,[ - SLT") and
final (sLT - stLl - sPT) states, the net magnetic destabilization energy is obtained:

E,,," = 2J[(2z - 3)SL + Up] , (13)

where J is the exchange constant (normally < 0, but here only its magnitude is used), and z is the number of
next-nearest neighbors. With z = 6, Ems, = 9J for SL = 1/2, 21IJ for SL. 1 , 33.J for SL. = 3/2, 45J for SL. = 2,

and 57J for SL. = 52.

7 Twelve nearest-neighbor caios are linked by direct cation-cation t2 orbitals across cube face diagonals and

play a role in th o hne rule r half-filled t2 orbitals are involved.
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According to Anderson's theory of superexchange [26] as applied to these simple oxides,

bm,- (2JSL2U)1/2 , (14)

where U is the ionization potential involved in the electron exchange, and b t =b2 2+b 2+b (b istheeffective

contribution from partially filled t2,-2pn states) and is the combined transfer integral for the particular cation-
anion interaction in thex-y plane. The origin of this definition of b., requires some explanation. In his original
work Anderson reasoned that the b integrals could be estimated from simple relations to the optical splitting

parameterDq, according to bt = (I 01/3)Dq with individual orbitals weighted by coefficients determined from
the size and directions of the respective e wavefunction lobes. For example, along the x or y directions the
coefficients would be 5/2 and 5/6, respectively, for the d 2 and dz2 states. To remain consistent with Equation
(14). therefore, the contributions to bt from the two e orbitals would be expressed as b 2 2 = (3/4)b and
bz 2 =(1 I/4)bit.
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Figure 6. Two-dimensional model of the intrasublattice passage of a "hole" in an antiferromagnetically ordered
lattice: (a) initial state, and (b) virtual destabilized state with two electron spins reversed to create possible spin
wave fluctuation.
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As a test for his theory, Anderson attempted to calculate the N6el temperatures from the standard relation
of classical molecular-field ferromagnetism theory.8 To this end, he estimated the J values from b. through
Equation (14). Although the calculated TN values were more than 50% higher than their measured counter-
parts, the qualitative trends served to verify his theory. One of several possible sources of the discrepancy
may be seen in the analysis of the one-dimensional MO approximation in Appendix C, where the relation
between b and Dq is determined after application of self-consistent pertubation theory that reveals only an
indirect connection between b and Dq for these compounds.

A consistent set of J values is desired for the present discussion, and a reasonable value for b 2 2 will be-y
necessary for computations later in this report. Therefore Anderson's approach will be used in reverse,
beginning with the well-established N6el temperature of NiO applied to the specific relation for the face-
centered antiferromagnet family8

J = 6kTlVzSL(SL + 1) (IS)

For TN = 520 K, z = 6 nearest neighbors, SL = I (for high-spin Ni2+), it follows that J = 0.022 eV. With
these values of J and SL combined with U = 7.3 eV, 9 Equation (14) then yields b,0o = 0.57 eV, leading to
b2 = 0.43 eV and b 2 = 0.14 eV. From these basic b values, effective b values may be constructed for other
transition-metal oxides, as shown in Table 4. In the important case of CuO, only b 2.2 = 0.43 eV applies. For
CoO and MnO, where it is estimated that partially filled t states make a 25% contribution through x bonding,
bw =, 0.57(1 + 0.25t) is used, where r is the number of active t2g states, i.e., c = I for Co2 , and = 3 for Mn 2 .

In general, the agreement between calculation and experiment is probably better than it deserves to be,
based on the uncertainties involved. As commented in the footnotes to Table 4, E numbers based on Heikes
and Johnston data at x = 0 are about a factor of 2 higher than what is typical for this group of materials.

3.4 MAGNETIC FRUSTRATION AND ZERO-SPIN POLARONS

As determined in several studies of ferrimagnetic spinels and garnets [29,30], the presence of a
diamagnetic impurity in a magnetic sublattice directly reduces the molecular-field coefficient N.. of the op-

iiposing sublattice and indirectly reduces the coefficient N.. between the sublatices, causing decreases in the
Curie temperature and controlling the contour of the thermomagnetization curve. This result may be readily

8 The standard formula for the ferromagnetic ordering temperature derived from the Curie-Weiss molecular

field theory is

TC = zS(S + 1)13k

In the case discussed here, Equation (15) was chosen instead of the above relation, because it applies directly
to the face-centered antiferromagnetic structures of the Mn, Co, and Ni oxides. The derivation of Equation
(15) was taken from Equations (6-3.27), (8-3.6), and (8-3.24) in A.H. Morrish, The Physical Principles of
Magnetism, (New York: John Wiley & Sons [1965]).

9 This value replaces U = 6.3 eV originally used by Anderson (see Table I in Anderson [26]), which appears
to have resulted from an error in subtraction.
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TABLE 4

Magnetic Trap Energies E., for z = 6

Emn(cal) EMW(exp) E (cal) Eho(exp)
U bt a  J (x=O) (x=O) F6-+O (x = 0.05)

Ion Config SL SP (eV)

Mn2  d s  5/2 9.9 1 0.008 0.46 0.67 0.10 0.60
Mn3 + d 4  2

Co2  d7  3/2 5.8 0.71 0.019 0.64 0.66 0.11 0.30
Co3  d6b  1

Ni2+  ds 1 7.3 0.57 0.022 0.54 1.21c 0.07 0.20d

Ni3 +  d7 Is 1/2

Cu2 +  d9  1/2 5.9 0.43 0.063 0.55 0.69 0 ~0

Cu3+  d is 0
a The value of b varies somewhat among these ions and depends on the distribution of d electrons.

For d 9and d7 (low spin), there is only one possible coupling and the maximum b is estimated as (5/2)Dq
for the d._y,2-p--d"2 _2 bonds; for d8 (high spin), two orbitals (d2y2 and d;) participate and the
maximum is (10/3)Dq, for d (high spin), d6, d , and d4 (high spin) all include smaller (- 25%) contribu-
tions from the usually neglected x-bonding t6states. The average Dq value -0.1 eV, but varies by about
±25% among the group. b. is scaled to 0.57 eV of NiO, with adjustments for Co2+ and Mn 2+ to account
for the contributions from haf-filled tg states, as described in the text. For Cu 2  with a half-filled d"
orbital b - b2,
b Co3+(d) will condense to a low-spin S - 0 state at low temperatures [27] with an energy of 20 kcal/

mole -0.86 eV. In this event, both eg electrons would undergo the transition in contrast to only one for
the o case.
C This value for N 2 + is anomalously high in comparison with others, e.g., the Springthorpe et al. value

of 0.28 eV for x , 0.002 [28], suggesting that the polaron concentration may be smaller than believed
and that the hopping mechanism may not yet be influencing the conductivity. The other values in this
series are also somewhat high, raising the possibility of a systematic error in measurement or data
reduction (e.g., a factor of 2) affecting all these results.

d At temperatures below 100 K, E was measured as 0.009 eV [28], as discussed in Appendix D.

hIi

explained by the notion of local spin canting (with angle 0 to the alignment direction) surrounding the dilutant
ion, where the loss of exchange linkages at neighbor sites reduces their spin commitments to the magnetic
order and their contributions to the molecular (exchange) field. In Figure 7(a), this effect is represented by
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an angular dispersal of the spins immediately surrounding the three ions involved in the transfer process, with
the transfer ions themselves remaining in momentary 180-deg alignments (as in the snap-shot of a transfer
event). For this situation, Equation (13) can be modified according to

E = 2[(2z-3)SLFO+3SP] , (16)

external + internal

145391-7
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(a) (b)

Figure 7. Growth of magnetic frustration from (a) local spin canting caused by magnetic dilution to (b) regions of
complete disorder defined by the boundaries of itinerant Sp = 0 polarons.

where F0 < I is a canting factor related to the average alignment component (cosO) that depends on the amount
of magnetic dilution.

With F9 < I, Equation (16) indicates that Em' will decrease accordingly as the antiparallel ordering

breaks down. Because F0 would decrease with x in the LiXM _O systems from Li dilution, the Heikes and
Johnston data [201 would be explained by the decrease in the external part of Equation (16), trending toward
a limiting value of E -6JS, For the polaron ions involved in this study, comparison between theory and
experiment is also presented in Table 4, where at least qualitative agreement is established. The failure of Ni,
Co, and Mn to reach calculated levels suggests that only for Cu with Sp= 0 does F. -+ 0 and gives credence
to the notion that diamagnetic polarons are required for a complete local breakdown of magnetic order.

Twoconditions necessaryfortheminimizaionofE "emerge from Equation (I 6),F e - -* OandSP =0(thereby
setting SL =/2). If$L = 0, the magnetic alignment requirement is erased. The effects of canting are somewhat more
subtle, but nonetheless play an important role in the ability of some systems to support activationless current
transport. As depicted in Figure 7(b) for the real case of SL-- 1/2, SP = 0, the polaron has a double-barreled effect
on neighboring lattice spin alignments that can lead to a total breakdown in static magnetic order. In this situation,
the intrinsic part of Equation (16) drops out, and (12) can be approximated by

E,= e + (2z -)F O  . (17)
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Figure 8. Cation sublattice projection ofLa2_,Sr1CuO4 viewed along c axis, with La and Cu ions in alternate planes.
Note the canted spins about the SP = 0 Cu3+ hole (at corners of shaded square) and thefour small polaron Cu sites around
Sr2+ that provide a region offrustration that encloses 12 spins.

With an S, = 0 polaron, it follows that its diamagnetism will also create a region of local frustration around
the polaron source. Because the exchange isolation [29] from the missing couplings will also induce canting
in the spins immediately surrounding the zero-spin polaron site [30], each polaron can produce an extended
region of magnetic disorder.

In the superconducting perovskites, there is no direct dilution of the Cu sublattices. As examined at length
in the original report [ I ], it is the minority Cu3, ions in low-spin (S , = 0) states that provide the cause of spin
canting. Unlike the case of fixed magnetic dilutants, the itinerance of the Cu3+ ions can cause the greatly
enhanced region of frustration. Transfer of the polaron also means that the elastic deformations of the trap
form a "wake" of canting (F0 -+ 0) that relaxes at a rate determined by the strength of spin-lattice coupling,
thus creating a persistence to the region of frustration that could be sustained until the polaron returns to the
same site (similar in principle to the raster of a television screen). At low temperatures the relaxation time
increases, thereby offsetting the tendency for magnetic ordering to stabilize as T - 0, and raising the likeli-
hood of continued frustration within the region affected by the movement of the diamagnetic polaron.

Within the small polaron limit depicted in Figure 8 for La2_Sr CuO4, a total of 12 spins are subjected
to at least partial magnetic frustration.10 As the density of moving polarons increases and the average value
of F0 -+ 0, the net exchange field would be canceled at x = 0.08, with individual spins forming a type of fluid
state that is uncommitted to any single direction [31].

1o In an antiferromagnetic system, a common condition for the breakdown of magnetic ordering is N. .> (3/4)N,,

as pictured in Figure 8 in terms of the respective J constants.
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3.5 SUPERCONDUCTION AND ZERO-SPIN POLARONS

A generic representation of Equation (17) is presented in Figure 9 to suggest the manner of the decrease
in Ehop with the growth of spin disorder as the polaron density increases. In conjunction with the Figure 4 data,
the effects of spin canting are suggested by the decrease in Ehop with polaron concentration, where the most
pronounced effect appears with the Cu2+(3+) combination. (Note that each M 3+ polaron is accompanied by a
diamagnetic Li 1+ ion that likely occupies an adjacent site to minimize electrostatic energy.) Here the spin state
of Cu3+ is most likely SP = 0, in accord with the noncubic symmetry of the CuO lattice that should result from
a static Jahn-Teller effect. Because the activation energy of the Cu system decreases to values in the
millielectron volt range as the exchange interactions erode with increasing x, it is concluded that the major
part of Ehw in transition metal oxides is contributed by magnetic exchange." Additional support for this
conclusion appears in the data of George et al. [321, shown in Figure 10, where the activation energy above
room temperature is seen to increase with the spin of the rare earth perovskite (RE) 2CuO4, in which the RE
ions exchange with Cu2+ ions. Only the composition with diamagnetic La3+ produces an Ehop in the millielectron
volt range, exposing a metallic slope of p versus T in the regime below 600 K.

x

Figure 9. Model curve of the decrease in activation energy with the increase in polaron concentration.

"A more comprehensive summary of the E values for these simple transition-metal oxides may be found
in Schieber [191, Section V.A.
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Figure 10. Influence of rare-earth (RE) magnetism on the semiconduction (activation energies) of an (RE)2CuO4

series (George et al. [321).

As summarized in Table 5, only a select number (see Figure 11) of mixed-valence pairs may be capable
of satisfying the zero-spin condition for covalent transfer. These situations arise in transition metals where
crystal-field stabilization energy of the higher energy electrons is comparable to the mutual repulsion energy
(internal exchange) of electrons orbiting the same nucleus, i.e., the basis for Hund's rule. In order of
descending d electron population: d'° -+ d9 , d9 - dS(low spin), d8(low spin) - d?(low spin), d7(low spin)

-+ d6(low spin), and d' -+ do. The s' -+ so is included, because it will be shown later that the covalent transfer
mechanism can apply for Pb +(4 ) and Bi ( ) in perovskites [also TI2+(3+) if it can be found in a suitable
compound].
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TABLE 5

Zero-Spin Polarons for Covalent Transfera

Spin States Coordinationb Cations Orbitald Delocalization Polaron
S=11/2 S= O Typee

d - do  Octahedral TI3+(4') dxyx,) half-filled/empty n and p
V4+(5-) z affld/mt nnp

Nb4*(5*)
Ta4,(s,)

d5 (Is) -- d4(Is) Tetrahedral Fe3+(4+)  dix2 2 half-filled/empty
d7(Is) - s(Is) Octahedral C0o2(3+) dx2_y2 half-filled/empty
df(Is) - ds(ls)' Octahedral Ni3+(2+) d12 half-filled/filled p
9  - de(ls)t Octahedral Cu 2+(3+)  dz2 half-filled/empty p

d - d'0  Octahedral CU 2+(1*)  d" half-filled/filled n
1 o  Octahedral Pb3+(4+) s (p)O half-filled/empty p

a Entries in bold type indicate cases where suprconduction has been reported in an oxide. For

dl-- d and cO°--dg, the relative distribution of the mixed valence creates n-type polarons.
b Octahedral sites reduce to planar coordinations where the c-axis ligands move to infinity
c Bracket values represent the S = 0 state, which is the polaron in all cases except Ni3+(2+) where

S = 0 clusters exchange isolate an S = 1/2 polaron.
d For dxY.xzyzorbitals, transfer is by directcation-cation eKchange and should be less efficient in oxides.

The polaron is defined as the minority ion. If it donates the electron, material will behave as n-type;
if it receives the electron, it is p-type, regardless of its spin state.

f Low-spin d8 (S = 0) requires planar symmetry or a strong tetragonal c-axis distortion.

g In an ionic model, the transfer electrons are in 6s states, but in a molecular orbital model the 6p
states become more stable, as discussed in Section 7.1.

It is clear from an examination of the orbital occupancies (see Table 2) of Cu + (filled d shell, d^), Ti4+, V.,
Nb (empty d shells, dA), and Pb and Bi5* (empty s shells, s) that an S = 0 state is fixed. More interesting
situations develop, however, where the ions can assume dual spin configurations,' 2 e.g., d8, d", and d6. Based on
the diamagnetic behavior of La3+2[Li'+0.5Cu3+0.)O4 [34] and the weak paramagnetism of La'+Sr2+Cu3+O4124],
the orbital occupancy of Cu 3 was judged to produce S = 0 state. Because a 3+ charge on the Cu ion would
substantially increase the tetragonal field splitting of the e states over that of the host Cu2+ ion, this finding is
consistent with theory. Furthermore, low-spin Cu3 could not explain the magnetic properties of the nearly cubic
La3+Cu3+O3 compound [34]. In addition, E has been inferred [I] from T data to be approximately 3 meV in
the La2 x Sr CuO4 system, in accord with the 3-meV value determined for LaSrCuO4 [24], further indicating that
E mZ has been quenched by the presence of zero-spin cations and suggesting that Eh p - Eel"

12 In general, Hund's rule of maximum spin polarization can be violated if the crystal-field splitting is large

enough to offset the electrostatic repulsion energy of the unpaired electrons (internal exchange). This occurs
where the cubic splitting parameterDq is large, usually for high cation valence [33]. In the case ofd8, an additional
tetragonal splitting > 0. 1 eV is required to relax the aligned S = I pair to S = 0 in the e shell.
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Figure 1). Schematic diagram of S = 112 -- S = 0 transfers among 3d" group.

Another case worthy of discussion, which will be examined in Section 7.1 and Appendix F, is that
of Ni 3+(2+). Previously studied by Morin [35], Goodenough et al. [36], and Springthorpe et al. [28] in
Li'+ xNi 2+ _2,Ni+ XO, Ni3+(d) favors a low-spin state (S = 1/2 instead of 3/2), as interpreted from the ferri-
magnetic behavior at x > 0.3 [36]. With low-spin Ni3+, the attendant Jahn-Teller effects originating from the
single electron occupying the degenerate e states may become static at lower temperatures, and thereby create

a local tetragonal component to the crystal field of neighboring Ni 2+ ions, with the expectation of driving them
also into a low-spin (S = 0 instead of 1) state. Such an occurrence would immediately create transfer pairs
of low activation energy that would not only alter the normal conduction behavior with temperature, but could
also permit the creation of superconducting polaron cells. The radical decrease in the slope of log(p/ 1) versus
1/T data of Springthorpe et al. for T< 100 K suggests that small amounts of low-spin Ni2+ are created at low
temperatures even in this simple cubic material. More compelling evidence of nickel low-spin states was
recently reported in the results Kakol et al. [37] of a series of experiments with La2 -Sr NiP04, which yielded
p-type semiconduction with E - 20 meV at room temperature, as well as a superconduction T < 70 K.
Because the B-site Ni 2+ ions experience a strong tetragonal crystal field even before enhancement by Ni3+
Jahn-Teller stabilization, a sizeable population of zero-spin Ni2+ ions is a strong possibility.

For the case of Co2+( +), the low-spin state (S = 0) of Co3+ (d6) in octahedral sites was established by
Bongers [27] and Blasse [38]. The occurrence of low-spin (S = 1/2) Co2+ (d") is less probable because its
smaller ionic charge leads to a reduced Dq, therefore covalent transfer with this ionic combination is not
expected. Mixed-valence combinations involving Mn and Fe are also unlikely to provide covalent transfer,
Mn3+ and Fe4+ (both d 4) can theoretically assume S = 0 configurations but only in tetrahedral sites, 13 where
! 80-deg a bonding to oxygen ligands is not available.

13An interesting possibility for an Fe4+ (d4) low-spin state in Y3+ .,Ca2+Fe3+5Fe4+x012 garnet [39] was
suggested by a decrease in magnetizaton at low temperatures, signaling a possible change to the S = 0 state.
In spite of the large ionic charge, however, the Dq value for a tetrahedral site is only 4/9 that of an octahedral
site, and the interpretation that is based on ferromagnetic alignment between high-spin Fe4+ ions (S = 2) in

tetrahedral sites and Fe3+ ions (S = 5/2) in octahedral sites is more reasonable.
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Experimental confirmation of the incompatibility between antiferromagnetic order (E_.. > 0) and
superconduction (requiring E --+ 0) was clearly established for the La Sr CuO4 and YBaCu. 0 cupratemap 2-x ., 4 2 . .

systems [40-42], as shown in Figure 12, where the appearance of a measurable T begins only after the Nel
temperature TN falls to zero at x - 0.05. This value of x is compatible with the prediction of 0.08 deduced in
Section 3.4 [31 ]. The coincidence of these two effects will be explained later on the basis of large polaron
radii, which determine both the volume of local magnetic frustration and the threshold concentration for super-
conduction. Observed changes in crystallographic symmetry (the tetragonal to orthorhombic phase transi-
tion) could be interpreted as resulting from the onset of magnetic frustration and is often associated with the
appearance of cooperative Jahn-Teller effects in systems where Jahn-Teller ions are present.

The implications of this rationalization for superconduction in the presence of magnetic ions follow
directly: Where static antiferromagnetism exists through long-range spin ordering (T < TN), there can be no
superconduction; where residual dynamic antiferromagnetic exchange remains locally, superconduction can
occur through covalent transfer by two electrons (real-space pairs) moving in correlation to permit the hole
to transfer within the same magnetic sublattice in concert with spin wave fluctuations that satisfy local
antiferromagnetic requirements, as discussed in Dionne [1].
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Figure 12. Experimental verification of the magnetic frustration requirement prior to the onset of superconductivity in

La2_,SrCuO4 and YBa 2Cu30Y systems (data of Budnick et al. (401. Tranquada [411, and Torrance et al. 1421).
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4. MOLECULAR ORBITAL CONDUCTION

The implications of the London theory were reviewed in Section 1.2, where it was pointed out that
because of the spatial rigidity constraint, supercurrents could not comprise normal free electrons in a
conduction band. Thus, either the free electrons would have to alter their collective state or bound
electrons would have to be involved. The principal difference between the CET and the theories used
to interpret lower temperature superconduction in metals and intermetallic compounds is that supercur-
rents (or superelectrons) are not formed from a free-electron gas. As proposed in the previous report [I],
activationless transfer of bound electrons between covalent orbitals may be the superconduction mecha-
nism in mixed-valence insulator hosts. This concept departs from the Bardeen-Cooper-Schrieffer idea
that paired electrons (bosons) condense from the free-electron gas and returns to some of the earlier views
of the Londons [9]. Instead of electrons correlated as pairs in k space, the correlation exists in real space
for an entire chain of polarons in the same sublattice, as the associated electrons (or holes) move in
ordered cadence through the covalent bonds of a single giant molecule.

4.1 COVALENT TRANSFER VERSUS THERMAL HOPPING

As pointed out in Section 2. 1, the electron hopping mechanism that is responsible for the semiconduction
properties of oxides is energy conserving when the initial and final states are equivalent with respect to the
polaron source. 14 Such is the case where the ions represent different valence states of the same atom. In a
quantum mechanical sense, the carrier can occupy either site with equal probability and no net energy expense
is involved in a transfer. As long as phonons are available to provide activation, the equivalent sites
surrounding the polaron source are in dynamic equilibrium, similar to an electron being shared among atoms
in a molecular covalent bond. An important fundamental distinction between a molecule and the hopping
transfer situation, however, lies in the fact that covalent sharing is spontaneous, while hopping requires
activation. Spontaneous transfer occurs where the covalent state with the electron that is shared among
equivalent ions is more stable than localization of the electron on any single ion.

The difference may therefore be stated as follows: With covalent sharing, the electron exists as a
statistical probability among the ions of a polaron cell, independent of electron-lattice interaction; with
thermal hopping, the electron is transferred between ions through an energy activation from phonons.15

14As background to this topic, the reader is adv Ased to consult the comprehensive discussion of this problem
set forth by Goodenough [43], particularly in relation to the localized versus collective electron situations and
how the covalent transfer integral b might influence not only electrical conduction through band broadening
(and energy gap narrowing), but also magnetic order and lattice elastic deformations. In the basic CET theory,
only the special case of mixed valence is involved (c * 0), and it is assumed that the carriers are at least quasi-
localized, with bandwidths that may still be approximated by discrete levels.

15 The concept of polaron hopping in nonsuperconducting La2_,Ca1 (Mn2+ _, Mn3)O 4 was examined in detail

by de Gennes [ 18]. One important difference from the CET model is his use of the parameter b as a hopping
integral rather than a covalent transfer energy. Hopping may have been considered by de Gennes as the only
conduction mechanism here, but it must also be remembered that his work was carried out long before
superconduction in these materials was considered possible.
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Transition-metal oxides have been analyzed according to orbital energy-level structures described by the
point-charge crystal-field model [ I ]. A schematic diagram showing the alternate conduction mechanisms of
the Cu2+ -O2- -Cu3+ is given in Figure 13. Because the discussion was primarily qualitative, this approxima-
tion was quite sufficient. Where the chemical systems are more strongly covalent or where a more quantitative
examination of the covalent component of the orbital stabilization is desired, an MO model can provide
information about the mixing of the individual wave functions that comprise the covalent bond [44-46]. In
Figure 14, the formation of bonding and antibonding MO states are adjusted for slightly covalent (ionic
insulators) and covalent (band model) semiconductors and collective electron conductors (metals). If an MO
formalism is adopted according to the analyses in Appendices A, B, and C, the problem may also be
generalized to include both cation-anion-cation and direct cation-cation transfers.

02- 145"9113

C + CU30

- -- . -PHONON-ACTIVATED

-. - ELECTRON HOP

ORBITAL TRANSFER

Figure 13. Essential definition of two alternative conduction mechanisms (shown as single transfers in aferromagnet
or paramagnet). Hopping requires external activation, while covalent transfer is spontaneous.
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Figure 14. Conceptual description ofthe formation ofa pair of molecular orbital states, and the growth of energy bands
from the transfer integral energy b.

For a purely ionic bond there is no covalence, and the activation barrier between the two equivalent sites
can be represented by Figure 15(a). If covalent stabilization is then "switched on" (assuming the addition of
the necessary orbital overlaps), the bonding energy level is lowered by b/2 with b as the effective transfer
energy integral (see Appendix C) for the case where the two metal cations have the same stabilization energy,
i.e., EAM = EM,. In Figure 15(c), the MO stabilization is shown to reduce the energy of the hybrid bond level
with the result that the activation barrier is compromised by the energy made available through the covalent
stabilization. Where the transfer integral exceeds the hopping barrier energy [Figure 13(d)], electron transfer
is spontaneous because covalent sharing between ions is a more stable state than localization on an individual
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cation. The threshold for covalent (activationless) transfer is therefore b > E. , under which conditions thehop'

individual transfer ions may no longer claim stationary valence states but become part of a cation sublattice
of average positive charge in the manner of any quantum mechanical eigenstate. 16
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Figure l5. Pictorial definition of small polaron limit, showing how covalent stabilization overcomes local polaron trap
energy (b Ehop).

There is an obvious trade-off between the covalent transfer energy b and the magnetic exchange integral
j h/2SL U that emphasizes the need for frustration to occur. Because the combined transfer integral b

> b in all cases with SL > 1/2, where unpaired spins occupy orbitals in addition to the transfer orbital (d5, d,
d7, and ds), the CET condition may be stated as

b 2 (b2/SL2 U) [(2 z- 3 )SLF 0 + 
3 SPI (18)

16 To the extent that the carriers exist in d-electron energy bands that result from significant covalent interaction

through b, they may be considered as collective according to the Goodenough criteria [43]. Although it is still
convenient to discuss the ionic character of the materials in terms of specific valence states (e.g., Cu2+,Cu3), it is
unrealistic to expect experimental identification of individual ionic species when they exist only in a state of
transient equilibrium, as a wave function that is neither here nor there, but simultaneously everywhere!
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Equation (18) reemphasizes the necessity of F. -- 0 and a zero-spin presence (SL or S = 0) in the transfer
1,

ion pair. This inequality also defines a small polaron limit in the sense of Holstein, 7 as depicted in Figure
16, because spontaneous polaron movement among equivalent sites requires that b > E . Moreover, it allows

condition for the formation of a large polaron cell for which the carrier becomes itinerant within a range
determined by the strength of the dipole attractive field, causing magnetic frustration (where S = 0) that serves
as a necessary superconducting state.

Figure 16. Two-dimensional description of large polaron cells amidst fixed polaron ionic sources.

17 This result strongly resembles the small polaron limit determined by Holstein's model [ 14], in which the net
polaron trapping energy E [from his Equation (46)] in the absence of magnetic ordering reduces to

p= El

where J = b/2, and E = (I2Xe 2/X3aKef). Note that E varies inversely with the lattice distance a and the
effective dielectric constant Ketr

There is also a fundamental difference in Holstein's use of the transfer integral b for the large polaron
case (his band-type solution) in which the covalent energy is treated as a perturbation that reduces the
magnitude of the trapping energy according to [from his Equation (37)]

E= (e212w~aK.f)9/48b.

In this case, it will be seen that the basic elastic/electrostatic trapping energy (E) is not viewed as dependent
on b, instead the influence of covalence enters through a molecular orbital stabilization/destabilization
splitting that raises the effective energy of the carrier state, as analyzed in Section 4.2. The most important
difference, however, arises from the use of the CET mechanism as a competitor to thermal hopping.
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4.2 QUANTUM MECHANICAL TRANSFER EFFICIENCY

In Appendices A and B, molecular-orbital theory is first applied to the simple case of a metal-ligand
molecule to establish the basic MO functions of the bonding and antibonding d 22 - p a states of Cu2 -O_2- .

In Section 4. 1, the requirement for activationless transfer between equivalent polaron sites was defined as
b > Ehow. If E is largely of magnetic origin, this condition represents the situation where covalenthop
stabilization exceeds magnetic exchange destabilization, where orbital overlap can permit electron transfer
without intermediate spin realignments.

If the two sites are not equivalent with respect to the polaron source, there is a net energy defined as AE
resulting from the change in Coulomb attractive force ([ I ], p. 35). In the absence of covalent orbital overlap
(b = 0), thermally activated hopping may transfer electrons by surmounting the energy barrier of the model
in Figure 15; therefore, transport to sites of higher energy requires the energy input of an accelerating field.

With the covalent transfer energy b -+ Eh" , the possibility of tunneling grows until the equivalent sites
merge as a single molecule, with an equal probability of a mobile polaron occupying any of the sites. For
transfer between inequivalent sites (where AE > 0), the b > Eh" condition is not sufficient. To compute the

transfer efficiency as a function of changing polaron energy, the molecular orbital eigenfunction for the linear
pair of CuO molecules constructed in Appendix C will be used as a building block to establish a general
relation for a continuous chain. From Equation (C- 10), the MO state where the transfer electron (or hole)
resides is restated:

V_- 0.2 4 (k2txL+ k22XL) - 0.9 9 (k21XM+ k22XM,) , (19)

where X. and X.' are the respective copper 3d 2.. 2 orbitals, and XL and XL' are the oxygen 2p a orbitals that
form the overlaps. For covalent electron transfer between nearest-neighbor cations, the carrier density
reduction factor (or transfer efficiency) at Xt, was determined from the occupation probability k, 2

2 as [see
Equation (C-I I)]

1n12 2- k12
2/0 .5- I - IG 2  (20)

Consider now the question of successive transfers between large polarons along a continuoui chain (see
Figure 17). The polaron energy increase as a function of distance from its source may be expressed as

AEI r= - (e 2/Ka) (i/y-l) , (21)

where K is the dielectric constant. For the energy increase between two consecutive sites,

AE ,7.7+ =-(e2IKa)[I/(y+ 1) - 1/y] _ (e2 IKa)[I/fy+l)] , (22)

where y is an integer that counts the number of consecutive transfers of length a away from the polaron source.
From Equation (22), G12 from Appendix C may now be generalized according to

G, b = b7+1 /&E T. (23)
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b -0 SMALL POLARON LIMIT: b - Ehop
(a)
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1
: AI,1,= -e2 (Ka)(1/y-1)

LARGE POLARON LIMIT: b , 2A E1 1

(b)

Figure 17. Comparison of small and large polaron energies: (a) carrier may transfer among equivalent sites across top
of band if b 2 E.,. unless it relaxes to fill state vacated by a hopping electron from bottom of hand; (b) carrier may
increase energy quantum mechanically in cumulative steps away from polaron source up to a limit determined by
Equation (21).

From Equations (20) and (23), the transfer efficiency between y= I and y+ I may be expressed as a product series

7,

1.,Y+= f (i-G 12X1-G 23 ) - - - - (r 'G' 7~l).(24)1

If GIT.I >> I (a good assumption for large y), Equation (24) simplifies to 18

Y Y
.. -,- ' I .IGf, -1- AEy.,+ ,,+. (25)

T1.Y+1 - ,7+1 (25)77  l

I I
n Ni,&ni relation, follows frm ,,ho thorem,, rl"[( + 0)" 1 W + X ). where

u inx
U, n----U

if x << i.
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Because ba = (A+ + A+')s a from Equation (C-2), we can define

= (A,+A,+ )s (26)

To a good approximation, A., W Al + AE., (where A+ is now relabeled as A) and b',, (2AI + AE ,t
+ AE 1t+I )s with the subscript dropped from sa. Because A, >> AE,. (in the present case, A - 4 eV and

I AE, I 0.5 eV), Equation (25) can be simplified to

Y

TI, T+ I- X AE ,+1 /2A s= I-AE,~t /2Ais, (27)

or

t 1l- AE IT.lb , (28)

where AE , .' 
=

- (e2 Ka) ( 1/y- 1) and b 2A s, and both quantities are treated as positive. [For computational
purposes, a term - + 0.4(e2IKab)2 will be added to Equation (28) to correct for a small second-order
contribution that was lost in the approximation.]

This carrier reduction factor will later be expressed as a function of polaron density and used to modify
the superconducting carrier concentration in the phenomenological model for determining the critical
temperature. Because T I 1 is related to the carrier wavefunction profile away from the site of minimum energy
(i.e., closest to the polaron source), it also represents the short-range decay of the normalized charge density
I W, I 2 as a function of distance (Figure 1 8), and therefore, may be used to define the radius of a large polaron
cell that would determine the region of local magnetic frustration.

I~d

0L

- LARGE POLARON CELL RADIUS

Figure 18. One-dimensional model of a large polaron chain indicating the merger of carrier density functions I 1 2

to establish a continuous molecular orbital state.
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4.3 LARGE-POLARON ARRAY CONCEPT

From the idea that the carriers reside in the orbital wavefunctions of CuO layers, under the attractive
influence of isolated fixed charges, e.g., Sr2 ions in a La3+ sublattice, there emerges a rationale for describing
the conduction activity in real space rather than employing conventional band theory where the role of discrete
charges is lost in k space.

If the CuO molecules are used as building blocks, the lattice may be divided into polaron cells consisting
of connected CuO molecules arrayed about their respective stationary source charges. As depicted in Figure

16. each cell would contain one carrier that orbits the source charge in the guise of a zero-spin (CuO) + ion, 19

beginning as a small polaron that is transported among equivalent sites by thermal activation where b < Ehop$
and then expanding into regions of molecular orbital conduction as Eh^ decreases below b through the onsethop

of magnetic disorder where the polaron carrier is associated with an S = 0 situation as described above. For
this to occur, E ^.need not reach its minimum value EM. Only the threshold for MO transfers b > E op is required
to begin the process of breaking down the magnetic order within the spatial limits of the polaron to be discussed
in Section 5.1.

For complete MO conduction and magnetic frustration throughout the lattice, therefore, it is important
that the polaron cells be uniformly dispersed. A material in which the polaron sources are clustered would
logically have fewer carriers that are isolated from each other and the polaron lattice concept would not readily
apply. To account for the effect of inhomogeneous dispersal of the polaron sources, the concentration x will
be modified in Section 5.1 by a semiempirical ordering factor P, based on the same elementary probability
arguments used originally in Appendix C of Dionne [I].

4.4 REAL-SPACE ELECTRON PAIRING AND ANTIFERROMAGNETISM

With the MO mechanism of transfer now defined, the observed superconduction critical phenomena can
be interpreted. Before this subject is addressed, however, it might be prudent to introduce briefly the
longstanding question of whether a supercurrent is a true superfluid in all cases, i.e., whetherthe boson particle
condensation characteristic of superfluids is a universally necessary condition for superconduction. The
introduction of this topic at this juncture arises from the nature of the charge carriers to be used in the theoretical
modeling to follow. If the supercarriers must be boson pairs, as widely believed, how is the electron pairing
physically realized in the CET scheme? Or are there situations where the carriers are correlated as individuals?

19 It is appropriate here to remind the reader of the position taken in Appendix B, that localization of the hole
in the CuO MO state could in theory favor the oxygen instead of the copper lattice for a different set of initial
lattice energy parameters. To establish a zero-spin in this case, the Cu2+ spin (= 1/2) would have to oppose

the single spin of the now-paramagnetic 01- ion. In terms of the LaSrCuO 4 compound discussed in Sec-
tion 3.5, valences and spin alignments might be expressed as La3+Sr 2+Cu2 (T)O'-( )O 2-3 . This model,

however, does not easily explain the magnetic behavior of LaCuO3 or the superconduction of n-type
Nd .,Ce0.2CuO 4, to be discussed in Section 7.1.
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The BCS theory of superconductivity is predicated on the existence of conduction band electrons paired
in k space through the mediation of lattice vibrational modes (phonons). Because the two electrons have +k
and -k deBroglie momentum vectors, this device creates a carrier that immediately satisfies the basic
macroscopic local requirement of superconduction, that is p (or k) = 0, to yield a spatially rigid wavefunction.

In addition, this concept automatically satisfies the spin pairing requirements (in k space) of the Pauli principle

by assigning a resultant S = 0 to the carrier. The paired electron carrier also provides the 2e- effective charge
that is important for interpreting flux quantization and quasi-particle tunneling (Josephson effect) experi-
ments.

In Dionne [I], paired carriers are discussed only in connection with double-charged mixed-valence
polarons. In the basic description of the CET model, the carriers have been treated as individuals that move
in correlation through a molecular orbital chain without concern for the disposition of electron spin states. In
Sections 3.3 and 3.4, where the question of magnetic exchange interactions and their contributions to the
stabilization energy Ehp was examined [I], it was pointed out that internal energy conservation could only

be maintained in the absence of static cooperative antiferromagnetic ordering. Even if long-range ordering
breaks down (above the NOel temperature), local exchange coupling can still contribute to Eh p and the
superconduction can be quenched if b < Ehop-

A refinement to the single carrier transfer model that would account for both the spin coupling
compensation and the paired-charge phenomena would logically consist of double electron transfer events.
The most obvious (but least probable) scenario is the double mixed-valence transfer examined in Appen-

dix B of Dionne [1] for the CuI+(d' ° ) -+ Cu+(ds) + 2C case; here both ions have S = 0, and the question of
magnetic coupling is moot. The more likely double transfer scheme appropriate for an antiferromagnetic
system would involve a two-electron energy-conserved event, where a singly charged polaron carrier (with
SP = 0 that leads to magnetic frustration) moves in consecutive single-electron shifts to the closest
magnetically equivalent site two bond lengths away through the formation of a virtual Cu l+ ion as an inter-
mediate state according to

Cu2+ T + Cu2+ I + Cu3+ -e-- Cu3+ + Cu I+ I1 + Cu3+ -e-- Cu3+ + Cu2+ I + CU2  T,

or two individual electrons moving in tandem by simultaneously trading spin states in the process, as depicted
earlier in Figure 6(b), according to

Cu2 1T + Cu2+ I + Cu3+ -42e--+ Cu3+ + Cu2 I + Cu2+ T

Reference to the likelihood of some form of local electron pair formation in CuO is also mentioned in

Goodenough's review [47]. In eithercase, the transfer event represents the minimum current unit and involves

an effective charge of 2e, in accord with the requirements for explaining flux quantization, quasi-particle

tunneling and any other experiments that support the electron pair postulate.

Although it may be argued that this pair scheme could form the boson carriers required by the BCS theory,

the pairs proposed here differ substantially from the phonon-mediated conduction electron Cooper pairs in

k space. The electrons are part of the covalent bonding orbitals, the coupling is of local magnetic origin

associated with spin polarization in real space, and the carriers (individuals or pairs) move as part of a

correlated molecular chain, either in double steps or as real-space pairs exchanging spin states during transit.
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In the context of the CET model, there is another situation that may challenge the basic boson requirement
of superconduction. In oxide systems that feature a mixed-valence Ti4+(3+) transfer, SL = 0 and the super-
conductor is n type. As a consequence there is neither a real-space requirement nor an obvious mechanism
for pairing to occur. These materials will be examined in Section 7 together with a number of other
superconducting systems.

4.5 POLARON CARRIER STATISTICS

The microscopic view of superconductivity in metals is that boson carriers are created from the free electrons
of the conduction band with energies near the Fermi level. Because the quantum electrodynamic version of the
London theory requires that the carrier ensemble form a single wavefunction (n., = j jj '), the individual carriers
cannot be fermions because of the Pauli principle restriction that only one fermion can occupy a state at one time.
Supercurrents, therefore, would occur in the form of bosons that condense through the attractive action of the Pauli
principle to form a superfluid (boson condensation). In the BCS theory, the bosons are paired electrons with
opposite spins so that the particles or carriers have a double electron charge and zero-spin quantum number (S -
0). If the electrons are not paired, the carriers are fermions and the Pauli principle can only apply as a repulsive
force, with electrons collectively competing for a limited number of quantum states.

If the ensemble wavefunction is replaced by uniformly spaced polaron carriers moving in unison under
the influence of local electrostatic fields, however, there is also no competition for quantum states; carriers
entering cells occupy states vacated by simultaneously exiting carriers. This situation is analogous to a
vacuum diode without space charge, where each electron emitted from the cathode arrives at the anode before
the next one is emitted. With only one carrier per cell, the scattering action among fermions with parallel spins
by the Pauli exclusion principle does not produce impedance unless overlapping clusters of cells begin to
create a local Fermi gas.

The CET concept is approached from the classical version of the London theory (Vn - 0 instead of
V I V. I2 - 0), therefore the carriers are not assumed to be free electrons, and there is no requirement for paired
electrons mediated by phonons or other entities ink space; in fact, there is no requirement for paired electrons based
on purely electrostatic grounds. Instead the individual polarons may be ordered electrostatically by repulsion
within a chain of covalent bonds (the giant molecule concept), and real-space spin pairing in a supercurrent could
be required only to maintain any existing dynamic antiferromagnetic order (e.g., spin waves) along the molecular
transferpaths. Asdiscussed in Section 3.4, the Pauli principle is satisfied ifeitherthe polaron hasS , =Oand magnetic
disorder prevails where the lattice favors antiferromagnetic coupling in an undiluted state, or the lattice ions
themselves have SL = 0. Where the carriers transfer as real-space pairs with the double electron transfer of an Sp
= 0 polaron, the single ensemble wavefunction solution of Ginsburg and Landau becomes applicable because the
limitations of Permi statistics are circumvented by S = 0 bosons. Because these bosons are local and would
condense in real space, the overlapping necessitated by the k-space Cooper pair correlation is no longer of concern,
and the question ofa Schafroth condensation20 is moot. Bose-Einstein statistics could also apply as in the quantum
boson fluid formalism required by the Bardeen-Cooper-Schrieffer theory. Whether as individuals or pairs,
however, covalent rather than conduction electrons are involved, and the superconduction system proposed is more
localized than collective, particularly in the systems of low polaron density to be discussed later.

20 See for example, J.M. Blatt, Theory of Superconductivity [New York: Academic Press, Inc. (1964)],
p. 129.
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Based on the earlier discussion of the nature of superconductivity, the question of carrier statistics alone

poses a fundamental paradox. According to the Londons' [9] phenomenological assessment discussed in

Section 2, the superconducting state requires that carriers move with spatial ordering (the Vn s = 0 constraint).

Such a constraint implies order as opposed to randomness, and localization as opposed to collectiveness.

Although statistics are required to describe quantum state occupation probabilities of collective systems, does

it follow that statistics of any kind can play a role in an ideally ordered system? Does it matter whether particles

are fermions orbosons if they are isolated, oreven localized in an ordered chain, where there is no competition

for quantum states? One further question follows directly: If electron pairing, as evidenced by the apparent

double-electron charge phenomena, does not result from a requirement to satisfy boson statistics, can there

be superconduction situations where pairing is not present in any form? Or does some form of spin pairing
occur simply as part of the Vn, = 0 ordering requirement?

Whether the electrons are individual or paired, however, the mechanism of bound electron transfer is the

same, involving part of the fundamental binding of the crystal lattice - the covalent bond.
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5. SUPERCONDUCTION ELECTRICAL PHENOMENA

Up to this point the emphasis has been on defining the conditions for a covalent transfer conduction

mechanism that can coexist with thermally activated hopping. To explain the origin of supercondu'f-tivity, the

discussion continues in two steps: First, threshold conditions for the zero resistivity observed below the

critical temperature will be described, and second, the corresponding resistivity behavior above the critical

temperature will be examined.

5.1 CRITICAL TEMPERATURE AND POLARON CONCENTRATION

Where covalent transfer is possible, zero resistance may be established when a threshold combination

of polaron density and dispersal permit the formation of a continuous molecular chain [ I ]. Above a critical

temperature, thermally activated hopping increases to the point where the effective transfer carrier population

falls below the required minimum value. According to the original model, Equation (14) in Dionne [1], the
instantaneous population of polarons engaged in random hopping is

nn = N exp(-Eho,/kT) , (29)

where N is the mean polaron density, and the exponential factor represents the probability of a hopping event

as dictated by the familiar law of diffusion by thermal activation. Participation in covalent transfer by the

remaining polarons 2 1 is jointly dependent on the dispersal of polaron sources (to satisfy the ordering

requirement) and the degree of covalence. The maximum density of superconducting polarons is defined as

ns = TIPN [I - exp(-Eho/k)] , (30)

where N is decreased by the transfer efficiency 0 < 15 I (previously assumed to be unity [ 1I) and the polaron

dispersal factor 0:< P:5 1.

The statistics that are required to describe state occupancies of collective electrons are not invoked here

because the model involves only isolated polarons. Each mobile polaron (which may move through paired

electrons or in double transfer events) is an individual carrier that does not have to compete for an available

state; when it moves into an adjacent cell it inherits the environment of the exiting polaron that is being

expelled through electrostatic repulsion. The basic concept is stated as follows: Where orbital overlap

between mixed-valence cations satisfies the transfer condition (b 2! Ehop) in a system where polaron cells can

merge into a single MO chain, superconduction can be an operating mechanism; superconduction, therefore,

can be destroyed by thermal excitation of the electrons out of their bonding orbitals into the semiconductor

hopping mode.

21 For the sake of completeness, a third group of localized polarons may be defined as n'= N - (n,+ ns),

which would be zero if both 1 and P were unity.

43



In terms of fractional populations, with xas the nominal polaron concentration per chemical formula unit,
Equation (30) may be expressed as

x/xf = n/Neff = [ - exp(-Ehop/kT)] (31)

where Xeff = TlPx is the effective polaron concentration at T = 0. It is instructive to recognize the statistical
meanings of the three factors in Equations (30) and (31): 11 determines the relative occupation probability (in
a quantum sense) of the electron being present at the junction of the two polaron cells in order to undergo
covalent transfer, P is the polaron isolation probability, and the bracketed factor is the probability of the
polaron carrier not being in the process of thermal activation.

5.1.1 Transfer Efficiency rl

In the mixed-valence p-type Cu perovskites, it was concluded from the MO calculation that il
I - AE .,Ib [see Equation(28)]. For a one-dimensional approximation of a polaron carrier between two source
charges separated by R and the carrier a distance r from the nearest source,

AEn't = - (e21Ka)[l + (r-I)- - y-1 - (F-y)-'] , (32)

where the reduced distances y = ra and F = Ria, with lower limits of 1. The repulsive energy between the
carriers is assumed to be fixed because the fixed source charges are stationary and the supercurrent occurs
through mutual repulsion of the mobile charges with the correlated polarons retaining their separation as they
propagate.

For a = 4 A (the approximate Cu-O-Cu bond length) and K= 16, for example, AEL , is plotted as a function
of y in Figure 19 to illustrate the polaron electrostatic potential barriers for various values of F. A threshold
of b/2 based on b= 0.43 eV corresponding to the value of b.2 2 for CuO determined in Section 3.3, is included
to suggest the appropriate range of F values for this system.22 The Coulomb energy peaks at Y= 17/2, half the
reduced distance to the junction between cells, therefore the energy barrier AEm at the cell boundary may
be expressed as

AEmax -(e 2/Ka)[i+ (-i)l - 41- 1] (for F> 2) (33)

Because the concentration x = aIR (which also applies in three dimensions), F- I Ix, and Equation (33) may
be written in terms of the polaron concentration,

AEmax -- (e21Ka) [(!-2x) 2/( l-x)] (for x < 0.5) (34)

22 This value of b is chosen in preference to the calculated b = 0.67 eV that is determined from the MO model
developed in Appendix C, although the two values are close enough to produce qualitatively similar results
throughout this text. Although b is a negative energy, the minus sign is being dropped throughout this text
because only the magnitude of b is used in any calculations.
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Figure 19. Large-polaron Coulomb potential AEI., versus yfordifferent reducedpolaron source separations F, based
on Equation (32),for K =16.

A four-polaron relation that comes closer to the actual geometry of the layered perovskite-type compounds
was derived in Dionne [I]; an abbreviated two-polaron version that produces similar computational results
is expressed as

AEmax = - (e2/Ka)[2(l + r 2/4)-1/2 - (i + F2)-" 2 - ] (35a)
or

AEn= = - (e2 /Ka)[4x(! + 4x2) - If2 - x(I + x2)-1/2 - I] (35b)

Through Equations (28) and (35) the transfer probability as a function of concentration can be
summarized as

71 = I- AEax/b (36)

In Figure 20, Equation (36) is plotted as a function of 17/2 for b = 0.43 eV, a = 4 A, and K = 16, to illustrate
a typical variation in 71 for the high-Tc peovskites.

5.1.2 Isolation Probability P

For the isolated polaron concept to apply, a high degree of dispersal must exist. The MO cell model has
meaning where the isolation probability factor P -- 1, and to the extent that P is less than unity, the effective
density of potential supercarriers is reduced accordingly. If conduction takes place by linkages of these single-
carrier cells, it follows that Pauli principle concerns become important where cation clustering causes cells
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to overlap, thereby forcing multiple carriers to compete for states within the same regions of the lattice,
invoking the need for Fermi statistics.
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Figure 20. Transfer efficiency i1 as a function of 72, for K = 16 and b = 0.43 eV.

The estimation of P must be adjusted according to whether the smallest transfer event involves one or
two electrons. According to the rationale developed earlier (Dionne [1I, Appendix C), it follows that

P, = I - 2 x for 0:< x:5 1/2 (single transfers) , (37a)

or

P2 = I - 2x - 20 'x - I - 4ox for0<x5 1/3(pairs) , (37b)

where the variable term in the equation for PI is the probability of a second polaron occurring adjacent to the
initial one, and P > 0 is a dispersal parameter that is unity for a random distribution, less than unity for higher

dispersal, and greater than unity for clustering.2 The factor of 2 in Equation (37a) accounts for the removal
of the pair of adjacent polarons as possible supercarriers. In the case of P2, the two variable terms represent

the probability of a polaron source appearing at least once on two consecutive sites from the initial polaron.
For this simple first approximation, we assume that P - P' (the respective dispersal parameters for nearest and
next-nearest neighbors).

2This model replaces that of Dionne [I], Appendix C, where -1 < a < I was defined as the dispersal
parameter.
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5.1.3 Te and Threshold Carrier Concentration x,

From Equation (31 ) the condition for the onset of zero resistance may be set by defining a polaron transfer
threshold density n, (or concentration xt) for the completion of a current path. As discussed earlier, this
threshold is contingent on a number of events taking place, principally the dipole alignments of the itinerant
polarons and the presence of at least partial magnetic frustration. Assigning the critical temperature Tc to the
threshold concentration condition,

X/Xeff = n/Neff = [I - exp(-Ehop IkTc)] , (38)

and the basic relation for critical temperature may be expressed as

Tc = Ehop/kW , (39)

where W= ln[I -n/Neff]-I = ln[l -x Ixeff]- I =x/xeffforx t <<Xeff. If Ji << 1 andbislarge,rJP-* I and
Xeff -x. Equation (39) may then be reduced to the ideal case ofT c = (EhOpk)(xxt), with W = xtx. Thus,
high Tc values for large Ehop, but also for large polaron concentrations x and small thresholds xt.This last
condition may be exploited by large b values, which also serve to raise TI and optimize the effective carrier
concentration, i.e., Xeff - x. Therefore, a simple rule for obtaining high Tc values would be high Ehop (small
K) and large b (large covalent stabilization energies). According to Equations (38) and (39), Tc represents
the temperature at which x. = x. As x varies, the function TIPx = 71(l - 4[3x)x follows a parabolic-type curve,

reaching a peak at xm x - (8)-I.

If small threshold carrier concentrations lead to large Tc values, it follows that large polaron radii are the
principal reasons for the high-Tc oxide superconductors. Analogous to the small polaron b limit introduced
by Holstein [48] i.e., b _ Ehop, a large polaron b range will be defined as Ehop .b < 2AE I , as depicted in Fig-
ure 17.2 From this concept we may set an effective radius of isolated polarons from the definition of AE,
in Equation (28), according to

yp = 2fL/(20 - I), (40)

241n a quantitative sense, the polaron radius is only figurative. As defined here, it means that the displacement
of the polaron carrier at which the Coulomb destabilization energy step (AE) becomes equal to the covalent
stabilization (- b/2). In terms of the simple quantum mechanical approximation used to estimate 71, the polaron
wavefunction decays relatively according to Figure 20 and reaches a minimum at AEmu but only reaches zero
if AE x >: b. An absolute polaron radius would therefore be defined by b = AE Y, but an effective radius that
is consistent with the onset of superconduction is b = 2AE Ir.More helpful from a conceptual standpoint would
be an exponential dependence in which the radius appears as a characteristic decay length, in the manner of
a penetration depth or coherence length, but unfortunately this simple model of the CET mechanism does not
readily permit this.

From Holstein's work [ 14], it is worth noting that the effective length of a large polaron in a linear chain
may be approximated by

1,,- a (2bnra3/e2Kcff)
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where fQ = e2IKab. From this definition it follows that the reduced threshold polaron separation Ire would be
twice the reduced radius (or 2yp), and the transfer threshold concentration in a perovskite could be approxi-
mated by

x, = IWp = l/2yp = (2l- I)/4. (41)

Note that within the approximations of this simple model, yp -+ o in Equation (40), and x - 0 in (41), where
2.Q - I < 0. This result is not unreasonable, however, when one recalls that a second condition for

superconduction is the breakdown of long-range antiferromagnetic order. In effect, x, would be the larger of
the x value at which TN-- 0 and the result of Equation (41).

5.1.4 Polaron Concentration x0 for the TN, Tc = 0 Condition

Because the polaron dimension also influences the spatial extent of local magnetic frustration discussed
in Section 3.4, it follows directly that the Ndel temperature would decrease monotonically with polaron
density and reach zero where the polaron cells merge or percolate. As a consequence, a minimum
concentration for superconduction at Tc = 0 (and a maximum for magnetic order at TN = 0) will be defined as

X0 = riP/xt , (42)

with i and P evaluated at x = x,. Because riP < 1, xo will be greater than x,, particularly in the oxides
if ri is small due to a larger polaron radius. In the data to be examined next, x, - 0.04 and xo - 0.075,
consistent with the range of minimum polaron concentrations (0.02 < x0 5 0.09, from various publica-
tions) that also represent the point of total breakdown in static magnetic order (TN = 0) as verified by the

data in Figure 12.

5.1.5 Interpretation of T. versus x Data

To test this theory, Equation (39) with P = P2 is fitted to experimental results for high-temperature

superconducting systems. In Figure 2 1, T, versus x data from the La2_,SrCuO4_y system (with tetragonal
Cu-0 6 complexes), for samples presumed to have oxygen deficiencies [4], i.e., y > 0, for x > 0.2, and
for specimens [42] with y = 0, match the calculated curve for Eh p = 2.5 meV (close to the 3 meV value
reported for LaSrCuO 4 by Goodenough et al. [24]), and 0 = 0.7 (pair correlated). To illustrate the source
of the parabolic-type relation2 between T and x, x, is plotted as a function of x for T = 0 in Figure 22,
where the T. = 0 points occur at x,(0) = x, = 0.037 for which x0 = 0.075 and 0.3 1. At x = 0.2, the observed
point of maximum Tc in Figure 2 1, x. = 0.068. It therefore follows that this excess of supercarriers over
the threshold minimum at x, = 0.037 is what allows superconductivity to survive to T - 40 K. These
parameter values for the La2 .SrCuO4_y system will be used later in discussions of magnetic field and
current density properties.

25Another possible contributing factor to this peculiar curve shape is the temperature-dependent population
of the Cu3+ low-spin ions, which may be described in terms of a two-level Boltzmann function according to
xeff = xs[ I + exp(-A,/kT)], where A,, is the net low-spin state stabilization energy. For the Cu2 +(3+ )

combination at least, it may be assumed that xeff - x s because Ais kT, as evidenced by the Goodenough
et al. results at room temperature [24].
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Figure 2). Critical temperature T, versus xfor La2 _,Sr Cu0 4, La 2 -,Sr1CaCu206, and YBa2Cu30Y (where y has been

converted to x using the linear model y = 0.25x- 1.5); data ofTarascon et al. [4, Torrance et al. 42), Cava et al. [49),

Johnston et al. 150], and Badogg et al. (511.

Recent results [49] from a related series La2_.Sr.CaCu20 6 with pyramidal Cu-0 5 complexes that also

features fixed polaron sources shed additional light on the origin of T,. For z = 0.4 (equivalent to the

same polaron concentration of x = 0.2), a maximum T. = 60 K was determined. As indicated by the

dashed curve in Figure 21, this rise in Tc from 40 K may be explained by an increase in Eho from 2.5

to 4 meV, with all other parameters unchanged. In Appendix D, the higher value of Eh. is discussed

in terms of changes in crystal-field stabilization energies as the Cu coordination is truncated from a

tetragonally distorted octahedron (Cu-O6) to a square-based pyramid (Cu-0 5 ).

For the YBa2Cu3Oy system with maximum Tc - 95 K, data of Johnston et al. [50] are compared in

Figure 23 with a calculated curve based on the linear relations between x = 0.2 5y - 1.5 derived in Dionne

[ I ] (p. 83), for which x = 0.25 at y = 7 and x = 0 at y = 6. (For comparison with the 40- and 60-K systems,

the calculated curve is also plotted as a function of x in Figure 21). Because the superconduction occurs

in the Cu(2) planes with pyramidal O coordination, Eho = 4 meV, as discussed in Appendix D, x, = 0.035,
and 0 = 0.57, which suggest improved polaron dispersal through the less-fixed oxygen vacancies as

sources of polarons. As shown in Figure 22, the maximum x, = 0.9, occurring at x = 0.25. The

anomalous behavior of the Tc data beginning at y - 6.8 suggests that the x versus y relations depart from

linearity, reflecting a more rapid decrease in the pyramidally coordinated Cu+(2)-O5 concentration with
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oxygen vacancy density, possibly due to structural changes caused by depletion of anions in the
Cu(i)-O2 linearly coordinated sublattice. Such an occurrence is also suggested by the anomalous dip in
the room temperature p versus T data that corresponds to the 7" drop observed by Batlogg et al. [5 1].
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Figure 22. Supercarrier concentration xs(O) versus x for the Lo2_xSrxCuO 4 and YBa2CuO Y systems of Figure 21.
T = 0 at x 0.075 and 03, indicating the th, shodfor xs(O) = x - 0.035 to 0.04 in 0.th cases, with corresponding

percolation radii of about 14 transfer lengths (- 50 A).

The relative amounts of Cu3'(2) and Cu'*(1) as functions of y were determined by Brown [52] using
the bond valence sum approach (which is compared with the original linear predictions of Dionne [I] in Section
7. 1, where additional details of the chemistry and crystallography of this unusual system are examined). Fro
Brown's results for x, corresponding Tc values were calculated from Equation (39) with the same parameter
values that were used above, and are also plotted in Figure 23, where agreement with the Johnston et al. [50]
data is close enough to serve as further verification for the validity of Equation (39).

In both of these Cu perovskite-related systems, b is again assumed to be 0.43 eV, and K = 15.6, a value
typical for oxides containing these cations. For these values, x, = 0.035, and the corresponding polaron radii
become about 14 transfer lengths, or approximately 50 A. The significance of this radius value and how it
relates to the coherence length, which has been measured in these materials [53] as 34 A (in-plane), are
discussed in Section 6.7.
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Figure 23. Comparison of theory with T, versus y data from YBo 2Cu 3Oy. Theory is based on the linear valence model
developed in Dionne [1I1; data of Johnston et al. [501 and Batlogg et al. [511] reflect the nonlinearity determined from
the valence bond sum analysis of Brown 152].

The more complex layered systems (see Section 7.1) are less amenable to this type of analysis.-
because polaron sources are not as well defined. For example, Tc of Bi3+ 2(Sr2+,Ca2 )3[Cu2 1-. Cu 3 ]20 g4

reaches a value of i116 K for x = 0.33 [6]. As plotted in Figure 24, where a family of Tc versus x curves
is presented generically for Ehop = 4 meV and x, =- 0.035 with b ranging from 0 to 2, this higher tem-
perature composition would have a dispersal parameter [3 = 0.45. It should be pointed out that some of
the Cu ions have square-planar coordination (Cu-O4), which may result in EhoP > 4 meV (see Appendix
D). Another potentially important consideration for these compounds is the multivalent capability, e.g.,
TI1 or TI3+ ions, which may serve to explain the lower value of the dispersal parameter P3.

From these projections, some preliminary conclusions might be considered. Because Madelung
energy minimization would dictate that dispersal of polaron sources should be no worse than random, [3
should be: 1 . To satisfy this condition, P2 defined in Equation (37b) must be used to interpret foregoing
data, thereby indicating that double transfers are more likely, as single transfers would dictate the use of
P, from Equation (37a) and lead to values of P > 1. If the carriers transfer as pairs, in accord with the
accepted convention of superconductivity and the discussion of magnetic contribution to Eo p in Section
3.3, it follows that the maximum effective polaron concentration would be x = 0.33 (instead of 0.5 for
individual transfers), as indicated by the dashed-line extrapolations that show declining Tc values in Fig-
ure 24 for x > 0.33. From the [3 = 0 curve, this limit of x would therefore impose a maximum theoretical
T,. of about 330 K. Values of E,,p clearly descend to the millielectron volt range in these superconduc-
torn, consistent with the idea that the elastic trapping energy that remains after magnetic frustration may
be represented by the Debye energy, reduced by the coupling constant ot < I (see Section 3.2).
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Figure 24. Projected T, versus x curves based on CET theory over the range of0 P : 2for individual carriers and 0
< P5 I for pairs. Dashed curves indicate that the "real-space" pair model does not apply beyond x = 033.

5.2 RESISTIVITY VERSUS TEMPERATURE AND COMPOSITION

For transition-metal oxides, there are two mechanisms for electron transfer between mixed-valence
cations - one permitted by covalent bonding and the other stimulated by lattice vibrations. In compe-
tition with the orbital transfer mechanism, normal conduction results from the thermally activated diffu-
sion of an electron from its orbit on one cation to a higher-valence cation in a neighboring lattice site.
Because the exponential activation factor causes the resistivity to decrease with temperature, mixed-
valence oxides are considered to be (hopping) semiconductors, but differ from conventional collective

carrier (band-model) semiconductors in the very short lifetimes and diffusion lengths of the hopping
electrons that remain relatively localized to their polaron sources.

5.2.1 Origin of the Metallic p-T Slope

For metal oxides with mixed-valence cations (e.g., Litl 1 Cu2+l_2Cu3%O), a measurable electrical
resistivity exists and was determined by Heikes and Johnston [20] to obey the relation [from Equation (10)]

p = (Nep)-i
or

= (kT/Ne 2D) exp(EhoWkT) , (43)
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where gi = (eD/kT) exp(-Eo/kT) is the activated mobility, N = x(l-x)/V is the effective polaron density
expressed as the ratio of nominal concentration x to formula unit volume V, which is reduced to assure
that 0 < x < 1. The factor l-x represents the probability of hop completion at a given site, because the
incidence of a completed hop is dependent on the availability of receptors [ 15], and eD/kT is the familiar
Einstein relation for diffusion mobility. The diffusion constant D = d2 vp, with d as the diffusion length
(average hop distance) and yho as hopping frequency, related the Debye frequency. The symbols e and
k represent the electron charge and Boltzmann constant, respectively. Because d should increase from
a (the minimum distance between transfer sites) with the concentration of trapping centers, i.e., the
average hop distance will increase with increasing competition for available receptor sites, the approxi-

mation d - aF(x) = a(I-x)- l will be used over the range of interest in this discussion. 26 As a result, Equation
(43) is expressed as

p = [CkT(1-x)/x] exp(Ehop/kT) , (44)

where C = Vle2a2Vhop. [For YBa2 Cu30 7 , V - 1.5 a 3 ; for La2 _xSrxCuO 4 , V = (I+ 114 2)a 3 = 1.7 a 3 .]

The appearance of a resistivity minimum at Tmin = Ehoplk that separates insulator/metal regimes may be

determined from the aplaT = 0 condition applied to Equation (44). If Ehop << kT, Equation (44) may be
simplified to the linear relation

p - [Ck(l-x)lx]T + CEhop(l-x)x . (45)

The metallic slope of the p versus T curve is readily apparent in Equation (45), and its presence has been

discussed in connection with magnetic spinels as well as the simple oxides [20,21,54]. Figure 25 is plotted

from Equation (45) to illustrate the p minimum and its relation to the asymptote slope and p-axis intercept Pi.

5.2.2 Mixed Normal and Superconduction Resistivity (7' > Td

If one assumes that large-polaron cells also represent volumes of p = 0 in the normal state prior to the

carrier ordering that occurs with the condensation to the superconducting state, a possible refinement to this

model would treat these zero resistivity regions as local short circuits. To estimate the resistivity above the

critical temperature, consider the elementary approximation of a cylinder of length L and cross-sectional area

A shown in Figure 26. If all of the uniformly dispersed cells are grouped in two separate regions, i.e., as two

resistors of lengths L. and L. in series, the total resistance would be approximated by

R = pL/A = pnLI/A + pALA , (46)

26 1t may be determined from elementary probability theory that the most probable hop distance (i.e., diffusion

length) for polarons in a one-dimensional chain will be increased over the minimum distance by a factor F(x)

Sxn- = (i-x)- I , where n > I is an integer. The dependence on (l-x) - I serves to confirm and explain the

empirical result of Miyata et al. [54] for mixed-valence fenrites.
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with Ps=0,
P = P,[LnI¢L, + LS)I = Pn(! - LAlL)

or

= pn(i - V . (47)

V and V. are proportional to N and ns., respectively, from Equation (30), and (47) becomes

p = [CkT(I-x)lx] [rIP + (I - TIP) exp(Ehop/kT)] (48)

If Ehop << kT, Equation (48) may be approximated by the linear relation

p = [Ck(l-x)lx]T + (1 -TqP)CEhOp(I-x)/x , (49)

which reduces to Equation (45) where iP --- 0. Thus, the slope remains the same, but pi decreases with the
increase in covalent transfer probability. In the limiting cases of TIP = 0 (no covalent transfer) and ijP = I (ideal
transfer) respectively, Equation (48) reduces to:

p = [Ck(l-x)/x]T exp(Eho/kT) (hopping semiconductor) , (50a)

and

p = [Ck(I-x)lx]T (linear metal) (50b)

Note that an ideal superconductor has no hopping effects present with a linear p versus T curve that passes
through the origin. In practical cases, only metals with 7)P - I and Eh p - 0 are likely to approach this limit.

5.2.3 Tc and the Insulator-Metal Phase Transition

A family of generic plots of Equation (48) is given in Figure 27, where the demarcations between
semiconduction and metallic regimes are seen to occur at Tmin, which varies as a function of TIP according
to the relation determined by differentiation of Equation (48),

rjP1(! - TiP) = (I - Ehop/kTmin) exp(EhoplkTmin) (51)

This transition temperature would not be expected to appear below 1000 K because Ehop > 0.1 eV for
hopping semiconductors with magnetic order. From Equations (39) and (5 1), a relation between T, and Tmin

may be pointed out. The minimum in the p versus T curve can be observed only where Tc < Tmin, and this
threshold condition is expressed as

TIPl(I -TIP) = (I - W) exp(W) , (52)

recalling that EtoplkTc = W = In( -x/lPx) - 1.

Unfortunately, the variables TIP and EhopkTmin in Equation (5 1) cannot be readily separated. A direct
comparison with W is not convenient because this equation cannot be solved without an iteration procedure.
Insight may be gained, however, if one considers that small values of TIP, i.e., for a nonideal superconductor,
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lead to higher Tmin and lowerT values; in addition, T. is furtherreduced where the polaron density approaches
the threshold, x/x -+ 1. As a consequence, observation of minima are most likely where W is larger through
low polaron dispersal (TIP << 1), particularly for small x.
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Figure 27. Resistivity versus temperature for 0 <IP < I, showing the influence of covalent transfer on the lowering of
T.,, and p.

5.2.4 Interpretation of p versus T Measurements

Earlier validation of this p versus T model was established with the LixNilxO system in a study of
Ni 2+ -- Ni3+ + e- hopping cond':cion [55]. To compare theory with experiment for the high-Tc materials,
the data curves of Tarascon et al. [4] for the La3+2_xr2+Cu2+i_xCu3+O4_y system with x = 0. 10, 0. 15, and
0.225 are plotted in Figure 28 with the calculations based on Equation (48). Values of C = 16 mQ cm/eV,
Ehop = 2.5 meV, and 0 = 0.7 were found to provide a good fit. A similar agreement between theory and the
data of Cava et al. [5] for y3+Ba2+2 (Cu2+3_3xCu3+3x)Oy for y = 6.9 (representing an average x = 0.267 for
charge balance) is shown in Figure 29, where the portion of the curve below T, is extrapolated to show the
minimum. In this case, C = 9 mG cm/eV, Ehop = 4 meV, and j = 0.5. For both structures, a = 4 A, and the
C parameters require Debye frequencies 2XVD = (Od - 1014 rad/s. (For double hops, a - 8 A and the minimum
diffusion length would therefore decrease, lowering the corresponding value of %0D by a factor of 4.) It is also
significant that the ratio of the C values, 16:9 = 1.78, is in close accord with the corresponding ratio of lattice
cell volumes, (I + I P12): 1 = 1.7 1. As discussed in Section 5.3, the values of C are related to the microstructure.
Because the specimens discussed above were polycrystals, the effects of randomly oriented grains are
probably responsible for increased average diffusion lengths and higher C values.
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Figure 28. Comparison of theory with experiment for the La2 _,Sr,,CuO4 system (data of Tarascon et a!. 141).
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Figure 29. Comparison of theory with experiment for bulk polycrystalline and oriented film YBa 2CU3O7 (data of Cava
et al. [5) and Westerheim et al. (61)).
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For the La2 _xSrCuO 4 system, a Tversus x phase diagram is proposed. In Figure 30 the material is either

superconducting or metallic for T > Ehop/k. At large x, where Ehop - El, the insulating regime is at quite low

temperatures; at small x, the boundary of this region rises sharply with the increase in Ehop as antiferro-

magnetic order sets in. Where riP << 1, a small range in which the material can be superconducting at T- 0

begins at x = x0 , becomes insulating over a short T interval, and then reverts to metallic as T continues to rise.

This effect represents the situation where a minimum appears in the p versus T curve described above.
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Figure 30. Proposed phase diagram for the La 2_ Sr1Cu04 system.

In the x = 0.10 curve of Figure 28, a minimum in p appears at T= 60 K, together with evidence of two

critical temperatures. This result suggests the presence of at least two phases, one of which has Eh p > kTc .

The case of superconductors with multiple phases is examined next.

5.3 RESISTIVITY OF MULTIPHASE SUPERCONDUCTORS

5.3.1 Cylindrical Network Model

For practical systems, particularly polycrystalline specimens, phases with varying x that give rise to

regions of different T. values can produce a spectrum of p versus T curves [56,57]. Consider the multiphase

network depicted in Figure 3 1, where semiconducting regions (resistivity Po) are shunted consecutively by

different superconducting regions (Pn) of varying sizes. If the fractional cross-sectional area of the Po regions

isf. [= AO/(A0 + A,)], the effective resistivity of the network becomes
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n PP,

P= 1gn (53)

where gn = Ln/L and I gn = 1.

Ln

Figure 31. Cross section of a multiphase insulatorlsuperconductor network.

In Figure 32, model curves based on Equations (48) and (53) for a two-phase system covering the range

of 0 <f< ! are presented for specimens with the following parameter values: For Po, Ehop(0 ) = 35 meV and

x0 = 0.06 (partially frustrated, but not yet superconducting because x0 < x,), and for p 1, Ehop(') = 4 meV and

x, = 0.25. Based on these results, a partially superconducting material will retain its metallic slope until the

amount of semiconducting phase exceeds 90%. Because the p-axis intercept of the high-temperature slope

is defined in terms of superconductor phase parameters (it may be shown that pi - CEho(' )(I-xj)/x1 (1-) for
slopes in the metallic regime), the intercept may serve as a qualitative diagnostic tool for characterizing the

macroscopic homogeneity of specimen. Where the intercept is negative, as in the case of the YBa 2Cu3Oy

data of Cava et al. [5], there is the suggestion that trace amounts of even higher-Tc phases may be present,

perhaps regions with 0 --* 0.

An example of the departure from metallic slope with the presence of a large semiconducting region is

seen in the comparison between single-crystal Pb2 Sr2 (Dy,Ca)Cu 308 and multiphase polycrystalline

Pb2Sr 2 (Y,Ca)Cu30 8 results [58] that are reproduced in Figure 33. In accord with the above predictions, the

polycrystal has not only an insulator slope with <2% effective superconductor, here modeled with two

different Tc phases, but a resistivity almost an order of magnitude greater than that of the single crystal

specimen with about 35% superconductor. With Cu-0 5 pyramidal complexes in the Cu(2) sublattice, similar

to the structure of YBa2 Cu30 7 , the Ehop value for the superconducting phase was also chosen as 4 meV. A

slightly higher value of P (= 0.6) or lower value of x, (= 0.15) could account for the lower Tc = 50 K. An

alternative mode of presentation is demonstrated by the curves of Figure 34, normalized to p at 300 K. From

the data [59] for (TlO5BiO.5)(CazY2 )Sr 2Cu2Oy in Figure 35, it is reasonable to suggest that substituting

Y3+ for Ca 2+ ions may be more a cause of inhomogeneity than a source of carriers.
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Figure 32. Sample resistivity versus temperature plots of a two-phase YBa 2Cu3O Y system over the range 0:5ff5).
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Figure 33. Theory fit to experiment for Pb2Sr2(DyCa)CuOv single-crystal (f =0.65) and Pb2Sr(YCa)Cu3,O,
polycrystalline (f = 0.98) specimens. Because grain boundary and orientation effects are absent, it is likely that the C
parameter is smaller for the single crystal (data Cava et al. (58)).
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Figure 35. p(T)Ip1'300) versus T curves for the (Tl0.5BiO.XCa,Yj)Sr2Cu2O, family of mixed-phase superconduc-

tors (data of Huang et al. [59)).
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5.3.2 Microstructure Effects

As discussed by Kingery [60], the effect of grain boundaries in ceramics is reflected in the diffusion
constant and is usually of concern where the mean-free-path length is comparable to a grain dimension.
Because the diffusion length is generally much smaller than a grain diameter in hopping electron semicon-
ductors, the influence of grain boundaries appears as anomalous decreases in D over very short lengths, i.e.,
the grain boundary regions, and is usually ignored where p > 103 fl cm. Where the resistivity is not high,
however, as in the case of the high-Tc oxides with very small Eh. values, the impedance introduced at grain
boundaries is of greater concern.

In the foregoing interpretation of data, questions of resistance caused by scattering at boundaries between
crystallographically misaligned grains were not considered. Because both grain orientation and lattice dis-
continuities at grain boundaries would lower carrier mobility through local reductions in diffusion length d,
the semiempirical C parameter should be smaller for single crystals or highly oriented films. An example of
this tendency is shown in the lower resistivity curve in Figure 29, where data [61] from a highly textured
(c-axis oriented) YBa2 Cu30 7 thin film (thickness = 2000 A) sputtered onto a LaAIO 3 substrate are compared
with the results for a polycrystalline bulk specimen of similar composition. In this case, p is about three times

smaller than that of the corresponding bulk polycrystal.

A simple modification to parameter C that may seniempirically account for the anisotropy effects in
these low-resistivity granular oxides may be constructed as follows:

C , (C0(cos(p)) [(I - sg8g ) + (8gb18g)(DgIDgb)] (54)

where CO is the perfect-alignment limit, (p is an orientation angle, 8 gb/ 6 g is the ratio of effective thickness of
a grain boundary region to average grain diameter, and Dgb/Dg is the corresponding ratio of diffusion con-
stants that is also dependent on (cos(p). The (cos(p) factor outside the square bracket corrects for the general
misalignment effect that would result in a longer average conduction path, i.e., effective specimen length. For
ideal alignment, 4p = 0, Dgb/Dg = 1, and C = C0 . Because (cosqp) - 2/a for random orientation, an increase
in C of about 50% might be expected regardless of microstructue details. From Equation (54), the principal
contribution of grain boundaries would come from the (5 gb/18g)(Dj/Dgb) term, which represents a small
number multiplied by a large one, and one may assume that grain dimensions would have a detectable
influence despite 8 gb/lg << 1.

5.4 MICROWAVE SURFACE RESISTANCE R s

The high-frequency electrical properties of superconductors are influenced by both n. and nn, and have
accordingly been analyzed in terms of the Gorter-Casimir two-fluid model [621. As derived , for example,
in Van Duzer and Turner (63], the complex surface impedance is expressed as

Zs = Rs + jfto. s ,

= (lI/2)(02p02;.L 3 0 +jopXL (55)

where a. is the conductivity due to normal electrons, Co is the angular frequency, L is the London penetration

depth as defined in Section 2.1, and yo = 4n x I 0 - 7 Hin [meter..kilogram-second (MKS) units used here].
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For mixed-valence hopping electron perovskites, a, = u(nnIN), as defined by Equations (10) and (44),
and XL(t) = )L(0)[l - exp(W-WIt)] -112 [to be developed as Equation (65) in Section 6.3], with t = TIT c . The
MKS version of XL( 0) = (mIponse2) I 2 is used here with ns given by Equation (30) and subsequently TiP by
Equation (38). From these relations, the intrinsic surface resistance Rs of Equation (55) for a bulk supercon-
ductor, defined as the surface losses per unit surface area per unit surface current density amplitude, becomes

R ! f12m 31 2 o2V 3/2  x [I -exp(-W)] 1/ 2 exp(-W/t)
s 2 e2 k CT x3/ 2 (1-x) t /-exp(W-WI)]3 1 2  (56)

In Figure 36 calculations from Equation (56) are compared with R. data (corrected to remove the
asymptotic residual resistance contribution determined at T--+ 0) [64] of a YBa2Cu 3O7 textured film similar
to that of Figure 29 for v(= w/2x) = 1.5 X 109 Hz. For this particular film, Tc = 86.4 K, which gives W = 0.54
ifEho= 4 meV. The remaining parameter values used for the computations of Figure 36 are taken from those
determined earlier in fitting Tcand p data: C = 2.7 X 10-5 m/eV, x,= 0.035, andx = 0.25. Although the
corrections to the raw data to account for film thickness were based on the penetration depth temperature
dependence of the empirical two-fluid model (which differs somewhat from the CET version to be examined
in Section 6), there is remarkable agreement between theory and experiment, with a discrepancy that is less
than a factor of 2 across the entire range of 0 < t 1 !.
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Figure 36. Comparison of CET calculations and measurements of microwave surface resistance R. versus tfor flims
of YBa 2Cu3O9LaAIO3 and Nb (data of Oates and Anderson [641 and Sheen et al. (661, respectively).
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It is instructive to compare Equation (56) with the surface resistance expression derived from the BCS
theory,

Rs = (C' €03/T) exp[-A(T)/kT)]
or = (C" Tcm3/2/t) exp[-A(t)/A(0) (1.76/t)] , (57)

where C' is a constant. Because A(t)/A(O) - I for t < 0.5, it may be determined that the temperature-dependent
parts of Equations (56) and (57) approximate each other over this temperature range for W = 1.76. The fre-
quency dependence of Rs, which differs between the two relations, appears to favor o2 of Equation (56), as
determined by experiment [65].

To demonstrate further the difference in W between high-T oxides and BCS-type metals, data corrected
for residual resistance from an Nb film [66] is fitted to the temperature function of Equation (56), with W =
1.76 (see Figure 36). Because values for C, x,, andx are not available (if indeed applicable here), the computed
curve in this case has been arbitrarily adjusted to match R. at T= 77 K. Once again, however, the temperature
trend agrees with experiment over the entire superconduction range.

As indicated by Equation (55), R. depends jointly on a. and X3 . One would expect these high-T,.
compounds to have lower microwave losses because polaronic oxides should have ;, that is intrinsically
smaller than that of metals. Unfortunately, the larger XLvalues that result from smaller nse appear to more than
offset this advantage, particularly in the temperature regime closerto T,,. With the high-T,.compositions currently
under development, losses comparable to those of metals near their low T, limits may be achieved only at
operating temperatures substantially lower than T,. An unattractive scenario would be to have applications
of these superconductors restricted to a low-Tc regime.
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6. SUPERCURRENTS AND MAGNETIC PHENOMENA

Although the basic requirement for zero resistance has been defined as n,2: n,, which is largely controlled
by temperature, this condition alone is not sufficient for superconduction. Superconductivity is a thermo-
dynamic state of energy that is lower than normal and condensation to the superconducting state occurs when
this stabilization energy is transferred to a supercurrent flow. In the following sections, the role of magnetic
field in limiting this current is established, and the factors that determine critical magnetic field, critical current
density, and related phenomena are examined.

6.1 SUPERCURRENT FORMATION AND EFFECTIVE SUPERCARRIER DENSITY n,

It is important to repeat that a superconductor is not a perfect conductor. As stated earlier, perfect
conduction implies simply zero electrical resistivity -the unrealizable case of universally unimpeded charge
transport. For a material to be a perfect conductor, there can be neither scattering among carriers nor energy
loss in the form of thermal dissipation through electron-phonon interaction. In reality, electrons in a solid

can never be completely uncoupled from the lattice, and where so-called "free" electrons are involved, the state
occupation limitations imposed by the Pauli exclusion principle create a repulsive action that also restricts
current flow. Zero resistivity in the superconducting state, however, is achieved through spatial rigidity of
the supercurrent that fulfills the E = 0, B = 0 conditions. As pointed out in the discussion of Equation (3),
supercurrent rigidity (V-i. = 0) requires both V.A = 0 (the London gauge) and Vns = 0. The latter is also a
sufficient condition that implies real-space ordering of supercurrent carriers and may also involve some form

of dynamic spin ordering. The spatial ordering of charges (Vns - 0) in an MO scheme will now be examined

as the mechanism that creates fixed conduits for supercurrent flow.

If mixed valence can provide conduction among bound electrons delocalized within the directed lobes

of their covalent bonds, it seems intuitive that some kind of electrostatic ordering of these carriers must exist;
lattice periodicity alone would suggest a regularity to any carriers participating in the bonding. The charge
balance requirements for optimizing the Madelung energy also impose such a spatial distribution of valence
states. Because part of the trapping or stabilization energy of the carrier is from electrostatic attraction to its

polaron source, i.e., the other half of its electric dipole, the carrier ordering is dictated by the dispersal of the
fixed polaron sources, as depicted in Figure 37(a). For vanishingly small concentrations the carriers are

isolated, with radially symmetric cell profiles in an x-y plane (in reality, only the fourfold symmetry of a
d 2_y2 orbital in the Cu-0 4 square-planar case). As the spatial density of polaron "cells" increases, the shapes

of the overlapping regions converge into a chain to assume the minimum energy orientation of aligned electric
dipoles. At a threshold density of fixed polaron sources, condensation of ordered chains would occur
spontaneously in a manner depicted by Figure 37(b). A more realistic quantum mechanical picture of the

resulting giant molecule structure that permits the ordered passage of carriers through the directed lobes of
covalent bond MO wavefunctions is shown in Figure 38.

In the preceding sections, the necessary condition that p = 0 was discussed in terms of a series of parallel,
independent chains that could be represented by a one-dimensional model because only one completed chain
would be required for zero resistance. For phenomena related to the buildup of supercurrent and its associated
magnetic effects, however, orbital transfer can no longer be treated as an isolated linear chain but rather as

a series of interconnected chains distributed across a macroscopic area.
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Figure 37. Two-dimensional model ofpolaron condensation to superconducting state: (a) below percolation threshold,
and (b) afterferroelectric alignment with ordered supercurrent flow at threshold R =RI.
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I.

Figure 38. Superconducting polaron distribution and probability contour of the carrier density ns W= 1y 2.
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It will be recalled from Equation (38) that the completion of a single path was contingent on the existence of
a threshold supercarrier density n. occurring at T = Tc; because a fraction of the electrons is in thermal activation
at all times, the total n, cannot be expected to complete every possible superconduction linkage simultaneously.
Even if the chemical ordering were ideal (P = 1), the incidence of electron-phonon encounters is still random. A
possible analog to this effect would be the electrical breakdown of a gaseous medium, which begins with a single
irregular striation that moves about as dictated by random molecular collisions. As the ionizing collisions increase
with density (orpressure), multiple striations appear, and thegas iseventually transformed into a plasma continuum
with a large fraction of the gas participating in the current. In Figure 39 this effect in a square-planar lattice is
depicted by a Boltzmann population of hopping electrons that disrupt completed paths momentarily (a), only to
reestablish new ones adjacent to (or including part of) the originals (b).
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.e .. 0. . 0@
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Figure 39. Two-dimensional model of partially condensed supercurrent: (a) before disruption by hopping electrons,
and (b) after establishment of new supercurrent paths.
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At this point it may be reasonably assumed that the current increases continuously from zero, with only
theexcessof ns over n1 initially contributing to the supercurrent. An effective carrier density atT= Tc is therefore
defined as nse(Tc ) = ns(Tc) - n(T c ) = 0. At T= 0, however, there are no hopping electrons and one must assume
that all of nt is contributing to the supercurrent, i.e., nse(o) = ns(O). To satisfy these boundary conditions in
the most direct manner, the above relation may be generalized to all temperatures according to

ne(T) = n(7) - nt(T) , (58)

where n() = n(Tc)[ I - nse(T)Inse(O)]. Thus, the fractional contribution of the threshold carrier density n(T.)

to the supercurrent increases in direct proportion to the buildup of the effective carrier density nse(7) as

T - 0. The logic of Equation (58) is displayed pictorially in Figure 40, where the nse(T) population is pictured

as decreasing because of the proportionate decrease of ns(T) and increase of nt(T). After rearrangement to

isolate nse(T), Equation (58) becomes

s n (0) - n* (59)

1453140

TO T >O

nO-n ,  n,10 ns

n,-O nt>O

I I,

is e < n. n.0 , 0

n t  .. n s  n,- n.

Figure 40. Pictorial representation of the simultaneous decrease of ne(T) and the growth of nIT) as T - T, where n,
and n, converge to establish the threshold densiy for the onset of superconductivity.
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Based on this relation for the effective carrier density that contributes directly to the supercurrent, it is
now possible to proceed with an examination of the current- and magnetic-field related physical parameters
derived from the London theory.

6.2 CONDENSATION ENERGY AG

According to the London thermodynamic arguments [9], the condensation energy of the superconduction
transition is the reduction in the Gibbs free energy per unit volume AG. Inspection of Figure 37 reveals that
this energy may be represented by the difference in energy between aligned and randomly oriented dipoles
- not unlike ferroelectricity or the electronic analog to spin-ordering in spontaneous magnetism that was
originally proposed by London [671 in defining his macroscopic molecule concept. Unlike spontaneous
magnetism, however, there is no fixed population of dipoles and no strong exchange field that may lend itself
to a Brillouin function variation with temperature. Instead, the fractional population of superconducting
polarons is exponentially dependent on (kTr, and because the polarons are transported by covalent transfer
that is not directly phonon-coupled to the lattice, the conduction mechanism is temperature independent. This
situation permits the electrostatic potential energy of the dipole array to be released adiabatically as kinetic
energy of carriers in an ordered state, without the usual descent to random thermalization that produces the
temperature change associated with the magnetocaloric or electrocaloric effects.

Because condensation occurs as a supercurrent is generated, a two-dimensional model is not only
sufficient to describe the physical situation, but is probably more appropriate. For a planar array of dipoles
with moment md, this function could be expressed as27

AG = O.- Gs - ((md" md)fKRd) n/

- (md2(cose)/KRd3) ne (60)

Because (cosO) = I (perfect alignment), Rd = alxse = a/nseV, and md = eR/2 (at the midpoint between cell
centers), Equation (60) may be approximated by

27This relation may be derived from the standard theory for the interaction energy density of a dipole array

(with K = 1),

dr 3  r5
k>j jk jk

where rik is the distance between neighboring dipolesj and k. For a linear chain of aligned dipoles, the energy
per dipole is - 2md2/rd3, and for a square planar array, it is - md2/rd3, similar to Equation (60) with K = 1. In
the cubic case, the energy is zero to first order, smaller contributions come from quadrupole terms. If low
symmetry yields high AG, uniaxial and planar structures should feature larger critical fields and current
densities, as discussed in Section 6.4 and 6.6.
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AG . (1/4) (e 2 V/aK) (ne)2 ,

(1 /4) (e 2 /VaK) (Xse) 2 , (61)

where the minimum value of Rd = R t = 2a as shown in Figure 37(b). For a = 4 A, K = 16, and recalling that
V 1 .7a 3 for La2 _,SrxCuO 4, it may be estimated that AG= 8.32 X 108 (Xe)2 ergs/cm 3. (For this computation
and those that follow, e = 4.8 X 10- 10 esu.) Because xse is a function of T, AG(T) may be evaluated at T = 0.
With xse(O) = 0.068 for La1 .8Sr 0.2CuO4 (see Figure 22), AG(0) = 3.77 x 106 ergs/cm 3; for YBa 2Cu 30 7, where

xse(0) = 0.09 and V = .5a3 [considering only the Cu(2) sites], and AG(0) = 7.54 X 106 ergs/cm 3.

The formation of the spatially ordered carriers (Vn, = 0) in a molecular chain, therefore, results from the

electrostatic dictates of the Madelung energy. For the creation of the supercurrent, however, the dynamic
order of the carriers results from electrostatic repulsion between the mobile halves of the dipoles, possibly
enhanced by the Pauli principle repulsive action. As the carriers transfer between cells, maintaining the

required one carrier per cell ordering, there is no direct competition for quantum states and the Pauli repulsion

serves as a propellant to charge transport rather than as a cause of carrier scattering. As a consequence,

supercurrent rigidity follows naturally from the constraints of the directed bonding orbitals which act as

conduits for the passage of electrons.

6.3 LONDON PENETRATION DEPTH XL

From the relation between current density and magnetic field stated in Equation (3), the London
penetration depth is now defined in terms of nse, according to

Xt = (mc 2/4ze2ne)'12 _ (mc 2V/4e 2xe)112 , (62)

which provides XL(0) = 5.32 X 105 V1n2 xse(0)- 1f2 cm, if the true electron mass is used. For the Lal. 8Sr 0.2CuO 4

perovskite in Figure 22, V = 1 .7a 3, a = 4 A, and x3e(O) = 0.068, which yields L(0) = 2130 A, in good agreement
with the 2000-A value determined from experiment [68,69] for YBa2Cu30 7, where V - 1.5 a3 and xse(0) =
0.09, XL(0) - 1740 A, in accord with the 1670-A value derived from microwave strir line resonance mea-

surements [64]. The familiar ratio then reduces to the new two-fluid function,

[)LL(0)JXL(T)] 2 = ne(7)/ne(0) . (63)

From Equations (30), (38), and (59), Equation (63) is developed as

ne(T) = [I-exp(-Ehop/kT)]- [I - exp(- opkT)]

ne0 I -[I -exp(-E IkT )] (4

which leads to [)L(O)A.L(t)]2 = ne(t)/n s(0) = I - exp(W-W/t) , (65)

where t = T/T.

In Figure 41, generic urves of nse(t)/nse(O) from Equation (65) are plotted for a range of W values

[including W = 1.76, i.e., the universal ratio between kT and the BCS energy gap 1.t0)] and compared with
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curves of the empirical two-fluid (I - t4) and BCS models [70]. At this point, it is instructive to compare the

basic critical-temperature relations for both models:

kT = A(0)/!.76 (BCS) , (66a)

and

U, = EhoP/W (CET) (66b)

1.0

0.8 - % (1-t 4)

1.76 %

% BCS MODEL

0.6 - 1.0 %

W-0.5%

0.4- \

0.2

- CET MODEL

0 I I

0 0.2 0.4 0.6 0.8 1.0

t

Figure 41. Comparison of n'(t)/nje(0) versus tfor W = 0.5, 1, and 1.76 with the BCSffunction, and with the empirical

(I - t4) two-fluid function.

With the La1 8Sr02CuO4 and YBa 2Cu30 7 systems examined in Section 5.1, working values of W

determined from fits to data are 0.75 and 0.5, respectively. For the BCS model, the denominator is the constant
1.76 calculated from n/ry, where y is Euler's constant (= 0.577). All the material-related information is

contained in the gap parameter A(T) computed at T = 0 that appears in the numerator. This temperature-

dependent gap energy, which determines the ratio of supercarriers to quasi-particles (normal electrons), is a
maximum at T= 0 and falls to zero in a Brillouin-type curve as T -- T. In the CET treatment, a gap equivalent

would be the fixed numerator Ehop, but the denominator W is also a material-related variable that is strongly
dependent on the polaron radius y..

Although their meanings differ somewhat, A(0) and Eh p represent energy separations (the former a
condensation gap for electrons paired in k space and the latter a polaron trap barrier). The important
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differences in the two relations of Equation (66) also lie in the W parameter versus the fixed denominator 1.76
of the BCS model. Comments on the agreement between the curves of Figure 41 for W= 1.76 will be reser~d
for a later discussion.

Experimental evidence of the departure of nie t) from both the BCS model and the conventional two-fluid
curve may be seen in the results of .L(t) measurements. The ln[XL(t)[XL(O) - I] data of Anlage et al. [711
plotted as a function of t-, in Figure 42, where the ordinate variable in this instance was deduced from
microwave phase velocity measurements [72] and applies to the regime t:5 0.5. For purposes of comparison,
the curves are adjusted to merge at r-' = 2. All the YBa 2Cu30 7 (YBCO) films are fitted to CET curves with
W 5 1 and for the film with the LaAIO 3 substrate, W = 0.5, consistent with the T, results for bulk specimens
and for the LaAIO3-substrate specimens examined for the different superconductor variables throughout this
report. It is also interesting that the slight departure from linearity that appears in the theoretical ln[.L(t)XL(O)
- I ] function near t- = 2 is also reflected in the measurements, thus confirming that the function is not just
a simple BCS exponential. Further indication that a different two-fluid function is required for the high-T.
oxides may be seen when fitting the CET model to the microwave resonance frequency data of Oates and

'Anderson [64], as is shown in Figure 43. With this technique, the resonance frequency f. varies with the
temperature dependence of the penetration depth, which in turn is sensed through the changes in kinetic
inductance of a YBa2Cu3O7/LaAIO 3 stripline resonator. For a value of .L(O) = 1740 A, the agreement is
reasonable for W in the 0.5 to 1.0 range up to 90% of T,.

-2 145W0142

A v o/.a ioq

-3 YBCO/MgO
(Antage et al.)

CET MODEL

e -4

.5 -5

-6- W 1.76 1.0 051
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1

Figure 42. Comparison of calculated In[L(0IlAL(t) - I] versus t" curves with the YBa 2Cu3 O/IaA)03 and
YBa2CuPO9IMgO film data of Anlage et al. !71)for W = 0-5 and ).
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Figure 43. Comparison of calculated resonance frequencYfo versus t with YBa2Cu3OT#.aAI0 3 stripline resonator data
of Oates and Anderson [64]for W = 0.5, 1, and 1.76.

Although the regime in which the above analysis was focused is the clean limit 40 << XL of the high-T,
superconductors, for completeness it is appropriate to mention the relations for effective penetration depth XL

and coherence length 4 that are used for the classes of superconductors introduced in Section 2.3. For the
type-I pure lim it with 4D >> XL (formally expressed as 43 >> E,0X), X = 0.65 .l(E L 1 , nd for the type-HI
(London or dirty) limit where 4 --+ e (formally expressed as 41 << 40XL2), )L = )L(t. ) 12 _ )L(Wr /) /12.

6.4 THERMODYNAMIC CRITICAL MAGNETIC FIELD H.

If a bulk specimen is placed in a magnetic field H, the field will be expelled from the interior during a
superconduction transition (the Meissner effect). Consequently, the superconduction Gibbs free energy 6,
will increase by the amount of the energy density H2/8n of the expelled flux [73]. As a function of H, 6,

becomes

Cr,(T,H ) = C7s(T,0 ) + H2/87t (67)

For a nonmagnetic specimen in the normal state, however, 6,,(TH-) = Cyn(TO), and because the condition for

the return to, the normal state is G,, - 6, = 0, the critical field may be defined according to Figure 44 as

AG(T,0) = 7n(T,0) - G(T,0) = H,7(T)2/8n (68)
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and

H.(T) = [8n AG(T,0)]'1 2  , (69)

14m31-4M

I

SUPERCONDUCTING I NORMAL

I
I.

I/
AG; (0)

H

Figure 44. Change in Gibbs free energy as afunction of H, indicating a decreasing energy available for conversion to
the kinetic energy of supercurrent as H - H..

where H(T) is the field at the surface [recalling from Equation (I) that H (and is) decays exponentially, with
penetration depth JL]. After substitution from Equation (61),

H.(T) = (2rEe2 V/aK)1/ nse(7)

= (2ne2 /VaK)I'1 x,'(7) (70)

To determine Ht, it is important to realize that specimen cross-sectional dimensions should exceed the
penetration depth in order to avoid the necessity of a correction (I -AfWA)-11 2 to the effective volume of flux
expulsion given in Appendix E. If Aff/A -- I, as in the case of a fine wire or thin film, the flux penetrates much
of the material and the effective H, is substantially greater than the true value.
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From the estimates of AG(0,0) beneath Equation (61), substitution into Equation (69) leads to H,(O)
10 kOe for bulk La 1.Sr 0.2CuO4, and H(O) - 14 kOe for YBa 2Cu 30 7. An experimentally based value [5] of
10 ± 2 kOe for bulk polycrystalline YBa2Cu30 7 was derived from conventional theory.

A universal relation follows directly from Equation (70):

H,.(T)/H.(0) = [L(0)/)L(T)]2 = ne(7)/ne(O) (71)

and

H,()/H,(O) = I - exp(W-W/t) , (72)

to produce a temperature dependence that is the same as the two-fluid function of Equation (65). The curves
plotted in Figure 45 for W = 1.76 and 2 are, therefore, from the same family as those of Figure 41, but in this
case it is more appropriate to compare them with the standard thermodynamic relation H,.(t)/H(O) = (I - t), 28

and also to examine the slopes at T = T,. From the derivative of Equation (72) it may be shown that

[aH,(t)/t1= - H,(O)W , (73)

or

aH(7)/aT = - W [Hc(0)ITJ at T = Tc. (74)

To match the slopes of the CET curve to the thermodynamic relation, W must therefore equal 2, slightly
larger than the 1.76 BCS ratio. As indicated in Figure 45, the curves fit well over the upper quarter of the t
range. Based on these results, one concludes that lower values of Wsubstantially alter the shape of these curves
that include the appearance of a tail and an inflection point at t= W12 (i.e., concavity begins to appear for W < 2),
and have an overall deleterious effect on the magnitudes of H,.

At this point, it would be natural to continue with the subject of type-U superconductors, but this
discussion must await the explanation of coherence in the context of the CET that is covered in Section 6.8.

6.5 SPECIFIC HEAT DISCONTINUITY AC

For a magnetic field along the axis of a long thin specimen, a number of thermodynamic state variables
may be directly related to H, and al-T, as derived from the basic phenomenology of superconductivity [74].
The entropy per unit volume is given by

S = - (aryMT)H , (75)

28 Note that the CET universal relations for Hct)/H(O) and [LX.(0)AL(1)] 2 are identical according to Equation

(71) but differ in their thermodynamic counterparts (I - t2) and (I - 0), respectively.
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Figure 45. Comparison of H,(t)IH,.(O) versus t for W = 1.76.2, and the thermodynamic (I - t2) function.

where S is discontinuous at the critical point. The change in S then becomes

AS = S. -S =S - (l1/8) (Hc2/)

or

= -(1/4x) H, (aH/aT) (76)

It may be shown that aHJ1OT = 0 at T = 0, and that Hc = 0 at T = Tc; therefore, AS must pass through a

maximum somewhere between these two temperature limits. The latent heat per unit volume Q may,

therefore, be related to the critical field by

Q = TAS =-(/87r) T (aH,2/a7) (77)

Because H, = 0 at T = Tc, both Q and AS = 0, and the transition is adiabatic at the critical temperature.

ForT < Tc, cHfRT is always negative, S. > S, and this implies that superconduction is the more ordered state.

There is also an anomalous decrease in specific heat C observed as T rises through T. Based on AC =

T O(tAS)/aT, differentiation of Equation (76) yields

AC= C - C, = - (I Sx)T (dHc2aT 2)

=- (l/4x)T [H, (d2Hg1aV) + (aHRal) 2] (78)
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Recalling that H,(T,) = 0, the absolute value of AC(Tc) from Equation (78) may be determined by

substituting the expressions for aHlJT at T = Tc from (74), and for H(O) from (70) with the result that

AC(T,.) = - (I4) T (aHfT) ,

= - (I /4it) (H,.(0)2/T.) W2

- 2 (AG(O)T,.) W2  ,

= - (1/2) (e2 kVlaKEhp) W 3 ne(0) 2

= - (1/2) (e2klVaKEh) W3 xe(0)2  (79)

As a consequence, AC should be smaller for oxides with small W and H.(O) values, and large Ehop. For

La . 8Sr0 .2 CuO4 with T, = 40 K and W - 0.75, AC - 1 X 106 ergs/cm 3-K [see parameter values under Equation

(61)]; for YBa 2Cu30 7 with T. = 95 K and W - 0.5, AC- 4 X 105 ergs/cm 3-K.

By substituting into Equation (78) the relations for i)2HJaT2 derived from ne(7) of (65), AC relative to

its discontinuity value at t = I may be expressed as a function of reduced temperature by

AC(t)IAC(I) = W- 2 t( (2WIt3 - W2 /t4)exp(W-W/t)

- (2WIt3 - 2W2 /t4)exp[2(W-W/t)] I (80)

In Figure 46, generic curves of AC(t)AC( ) are plotted for W= I and 1.76to illustrate the qualitative agreement

with data of metals Sn [75] and Ga [76]. For the W = 1.76 curve the sign reversal of AC at t = 0.58 matches

exactly the London prediction that is based on reaching AS maximum at T= TV3 [74]. It is also interesting

that although the W = 1.76 curve does not fit the Sn and Ga measured curves with high precision, this value

of Walsorepresents the best fitof the CET model overthe full temperature range. For the high-TcCu perovskites
(W 1 I), the electronic contribution (- 7) to the specific heat may be masked by the lattice contribuiion
(-c T) where T exceeds 30 K. Experimental results, therefore, may not bear a close resemblance to the

calculated curve.

6.6 CRITICAL CURRENT DENSITY i,

Pursuant to the hypothesis ofdynamic ferroelectricity, critical current may be defined by equating carrier

kinetic energy to condensation energy AG. From Equations (68) and (69), one may assume [77]

AG = (I/2)nsemvs 2 = Hc2/8X = (I 14)(e2V/aK) (n3 ')2 , (81)

which leads to

v, = [(1/2) e2VlmaK] 1/ (ns')'f 2

or
= [(i12) e21maKJ'1 (xe)Ifl (82)

For La, .8Sr0 CuO4 and YBa 2Cu3O7 , with a = 4 A and K= 16, v, = 7.3 X 106 and 8.4 x 106 cm/s, respectively.

It should also be pointed out that the relation v, - K- 1/2 is consistent with the expected trends in local accel-

erating fields within materials of high or low dielectric constant, i.e., metals or insulators.
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Figure 46. Generic curves of AC(t)IAC(i) versus t for W = I and 1.76, compared with data of Phillips from Sn [751
and Ga [76]. The W = 1.76 curve provides the bestfit to the Sn and Ga data over the complete t range and its sign reversal
at t = 058 matches the London theory (74).

Because the relation i = neev represents the maximum possible supercurrent density for a given tem-
perature and magnetic field, it may be described as the critical current density defined from Equation (82) as29

= [(1/2) e4VlmaK]j'r (nE)32,

or = [(1/2) e41mV 2 aK] 2 (xC)3f2

= (5.4 X 10-6) V-1 (aK)-1/2 (x,')3/2  esu/s-cm 2

= (1.80 X l0-15) V-1 (aK)- 112 (xse)3/2  amp/cm 2  (83)

For the La .SSro.2 CuO4 and YBa2Cu3 0 7 superconductors of Figure 22 with K = 16, a = 4 A, and V = 1 .7a 3 and
1.5a 3, it(O) = 3.67 X 108 amp/cm 2 and 6.33 X 108 amp/cm 2 are the upper theoretical current density limits,
corresponding to x3(O) = 0.068 and 0.09, respectively.

29 From Equation (3) it will be recalled that i, = (c/4w)XL2 )A. IfAc, ,- HcL (for specimens of dimensions greater
than XL), then Equation (83) may be derived directly from the London theory, with

ic = (c14ftXHJAL) - [(1/2) e4/mV 2aK]'I 2 (Xse) 31  ,

after XL = (mc 2/4e 2n e)!f2 from Equation (1) and H. = (2xe2 V/aK)/ 2ne from (70) are substituted.
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From Equation (65), (83) may be converted to a universal curve,

i,.(O/i(0) = [I - exp(W-W/t)]3 2  . (84)

In Figure 47, universal curves for i,(t)/i,(O) from Equation (84) are ,!otted for W = 0.5, 1, and 2, once again
displaying an increasing concave shape above t = 0.5, as W becomes smajler. (The traditional counterpart to
Equation (84) is the Ginsburg-Landau function (I - t)3 2, considered to be valid near T, [77].) Comparison with
experiment (Figure 47) is first provided by the data of Hunt [79] for Sn and Clem et al. [80] for NbN (unoriented
thin films), both BCS-type superconductors for which a good fit to theory is found with W = 2. Further indication
of the applicability of the CET model is seen in the comparison with the data of Westerheim et al. [61] and Inamn
et al. [81 ] for highly c-axis oriented YBa 2Cu3O7 (YBCO) thin films, where the points fall between the W = 0.5
and I curves, the range established earlier in analyzing the electrical and microwave properties. In these latter cases,
the intergranularcurrentdensity i, P(O)=4 X 107 amp/cm 2, which is about afactorof 15 below the value suggested
under Equation (83) as the theoretical limit for intragranular currents. 30
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Figure 47. Normalized critical current density i/(t)li/(O) versus t for W = 0.5,). and2plottedfrom Equation (84). Data
for Sn are from Hunt [79],for NbN from Clem et al. 1801, and for YBa2Cup 7 from Westerheim et al. [6)) and Inam et
al. (81).

3°Critical current measurements with polycrystalline (granular) specimens are hampered by the transport of

current across grain boundaries. The density of condensed supercarriers is solely a function of temperature,
therefore, i.exP(t) should scale in poporion to the true (intragranular) current, and the universal iexp(t)/icexp(O)
versus t function for intergranular currents should not be affected by the impedance of the grain boundaries.
Based on the discrepancy between theory and experiment, one might conclude that the grain boundaries even
in highly oriented films could reduce the intergranular current density by an order of magnitude.
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Because i, is defined by Equation (2) as the density of supercurrent at the specimen surface, measure-
ments must be corrected for the effects of small penetration depths as analyzed in Appendix E. Where the
specimen cross-sectional area is not very much smaller than XL2, the effective current density is reduced
because the current is confined to layers within XL of the surface [78), and Equation (84) must be modified
to fit experiment by

icexP(t)/iexP(O) = [I - exp(W-W/t)]3/2 Aeff(t)/Aeff(O) , (85)

with Aeff = 2 )L[dj(l-exp(-d 2/2j)X + d2(l-exp(-d/2XL) - 2),L(I-exp(-d/2;L)(1-exp(-d 2/2XL)], and di, d2

are the dimensions of a rectangular cross section (see Appendix E). In the opposite limit of d1 d2 >> XL(O),
Equation (85) simplifies to

icexP(t)/i,.exP(O) = [I - exp(W-W/t)]3/2 ,L(t)/AL(O)

or from Equation (65),

icexP(t)/iceXP(O) = [ - exp(W-W/t)] , (86)

the same as the relation for n/e()/ne(O) from Equations (71) and (72).

In Figure 48, the data of Lessure et al. [82] for a bulk YBa2Cu30 7 specimen is plotted and compared
favorably with Equation (86) for W = i.
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Figure 48. CET universal plot of i/(t)/i (O) from Equation (86)for the bulk case with W = 1, compared with data of
Lessure et al. 182).
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In the presence of an external magnetic field H, part of the condensation energy density ///8n is required
to expel H from the interior of the material as shown in Figure 44, and a more general expression for AG(H)
may be constructed from Equations (67) and (68):

AG(H) = 6,(H) - G,(H) = (H'.2 - 1)/8X (87)

From Equations (82) and (87), Equation (81 ) for the kinetic energy density may be generalized to

AG(H) = (l2)nemv,2 = (H,-H2)/8n . (88)

If it is assumed that n. eis unaffected by H,3' the reduction in AG occurs as a decrease in carrier velocity and

V, = [(H,2 - H2)/4zmne] 1/l (89)

from which a universal relation for critical current density as a function of magnetic field may be deduced as

i'(H)lic(O) _ [I - (HIH.)2]' /
2  (90)

Thus, it is seen that the supercurrent is limited by magnetic field which offsets the condensation energy,
and by temperature, which controls the density of available carriers. It should be pointed out that Equation
(90) describes the situation in the absence of a fluxoid lattice, i.e., type-I superconductors, where H,. is the
thermodynamic critical field, and should not be expected to predict accurately the behavior of type-II
superconductors, in which a variety of magnetic field-related effects may influence i.(t,-) [84].

Because T7,.=EtopkW, the superconduction critical temperature may be raised in two ways, by increasing
Ehop, at the risk of introducing a magnetic exchange energy barrier that could upset the b _> Ehop requirement,

or by reducing W, either through improved polaron dispersal (P --+ 1) or smaller polaron radii (n, -* 0) but
at the expense of lowering the reduced values of H, and ic as T --+ Tc.

6.7 INTRINSIC COHERENCE LENGTH 1.

A natural continuation from the above discussion of critical magnetic fields is the subject of coherence
and its role in type-Uf superconductors. As discussed in Section 2.3, the notion of coherence was introduced
by Pippard [ I ll, who proposed that the nonlocal nature of the superelectron may be characterized in terms of
the uncertainty principle. In this approach as applied to free-electron systems, the superconducting electrons
are drawn from the population with energies within kTc of the Fermi level. In order to obtain a relation for
the individual carrier momentum p, in the superconducting state, Pippard reasoned that their momentum range
could be estimated by dividing the condensation energy, assumed to be equivalent to kT, by the Fermi velocity
VP, i.e., Ap1 - kTJvp [85]. As a consequence, the position uncertainty (coherence length) becomes Ax (= ) >
( h12xt)( vtk Tc).

3 1 In type-II superconductors there are situations where n: may be considered a function of H [83], such that

XL(H) -o. as ne(H) = I W(H) 12 - 0.
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Another definition of coherence length was provided by Ginsburg and Landau [12] from the solution
of a Schrodinger-type equation with a nonlinear term. The resulting aggregate eigenfunction for this
differential equation contained an exponential decay [see Equation (6)], V,(x) - V,(O)exp(-x/A), where

i, 12 = n I is the expectation value of a spatially varying superconduction ensemble wavefunction of
coherence length 4 that reduces to the Pippard result for T << T. Thus, the conceptual compatibility between
Pippard and Ginsburg and Landau may be seen if it is simply viewed as the average distance a carrier travels
before losing coherence with the ordered state. In reality, the carrier rarely reaches this limit, but the attendant
velocity range may be used to define the degree of spatial order.

In its essentials the Pippard definition describes the coherence of a carrier chain composed of
wavepackets with a spatial profile that may be assigned a de Broglie wavelength defined by

XdeS = hip, . (91)

This concept is compatible with the basic CET model of a chain of localized wavefunctions that link to
form a single MO function. Applying, therefore, the generalized form of the uncertainty relation for space
packets, we obtain

Aps.Ax > h/2x , (92)

or in this present context,

PAO - h/2n , (93)

where Ap1 is replaced by p, 32

In the CET model the condensation energy is not immediately determined by kT c, so the use of the
Pippard relation for Ap, must be modified. The role of the energy trap is different from the conventional band
theory approach in that it determines directly the population of available supercarriers but only indirectly their
energy. As discussed in Sectior 6.2, AG is determined by nse(T) and is more closely associated with Hc than
T,. Because the CET model has conveniently produced a distinct relation for the carrier velocity, however,
the question of estimating Ap5 by indirect means is unnecessary, and therefore, a coherence length similar to
that of Pippard can be defined directly from the relation for superconductor carrier velocity of Equation (82),

to (h2)10p (h27)Imv •
or

- [(h2/270me 2 ) (aKIV)]l 2 (ns e)-1/2

- [(h 2 I2ic2me2) (aK)]1 /2 (xe)- 1/2  (94)

32An alternative derivation of Equation (93) may be obtained from the standard quantum mechanics operator
through the relation -j(h/2x)V4t,, where p, is a good quantum number for a stationary state. The ensemble
wavefunction 4t,(x) - Vs(O)exp(-x/Wo from Equation (6), therefore VW, = - (I/&)V, again arriving at ps.t0
-, h/27c. This result suggests that the ensemble concept of Ginsburg and Landau and the individual wavepacket
idea of Pippard are equivalent as far as the notion of coherence is concerned.
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If the parameter values used in the earlier discussion of critical phenomena in perovskites are also
employed here, an intrinsic coherence length may be approximated by the following:

to [(h212x2me2) (aK)]112 (X,e)-1/2 ,

- 1.03 X 10-4 (aK)I/2 (xe)-I /2  (95)

If Equation (95) is applied to the perovskites with K = 16 and a = 4 A,

4.(0) = 8.23 X 10- x e(0)- If2 cm (96)

For x;,(O) = 0.068 (La1 .8 Sr0.2CuO 4 ) and 0.09 (YBa2Cu3O7 ), 4o(0) = 32 A and 27 A, respectively, in general

agreement with experiment [53]. For type-I metal superconductors, .(0) - 104 A, which is also consistent

with Equation (95) through the direct dependence of o on the dielectric constant (K'12 ) that becomes very

large in highly polarizable materials with loosely bound electrons. 33

A discussion of the type-il superconductors follows, and it is appropriate to establish the analytical

relationship between t and XL from Equations (94) and (62):

to = [(2h 2/lcm2c2 ) (aK/V)]"/2 )L ,

= 1.93 X0- 1 (aKIV) 1/2 XL cm , (97)

where XL is in centimeters. For the two perovskite systems,

= -- =5.18 X 109 (aKV -1t 2  ,

= 67 for Lal.sSrO.2CuO 4

= 63 for YBa 2Cu30 7 , (98)

with the latter result closely agreeing with the value of 62 derived from experiment [5]. These results serve

to confirm the expectation mentioned in Section 2.3 thai the high-T, perovskites behave as natural type-il

superconductors, with XLI >> I. (Metals with the large K values are Pippard superconductors, with

XL& << 1.) Although ic is temperature independent, in accord with traditional theory [86], it must be

recognized that both XL and 1E0 derive individual temperature dependencies through the supercarrier density;

as T-4 T., XL and t--+ -c through theirmutual dependence on (n3 e)- 1/2 from Equation (30). Although Pippard's

uncertainty principle arguments were used in these derivations of coherence length, the CET formalism yields

the above temperature dependence of to that is more characteristic of the Ginsburg and Landau definition,

which also produces a temperature-insensitive Kc = X(7T)/(T) [87].

33 The dielectric constant in the context of conducting materials is viewed here as a parameter that represents

the polarizability in a quasi-insulating state with at least some of the free electrons condensed back on their

parent ions for covalent transfer. In the metallic state of course, macroscopic polarization effects can only be

inferred, because any measurements are precluded by the presence of free electrons. This topic is examined

further in Section 8 and Appendix G, where the K for Sn is discussed in terms of K, He(0) and the electron

velocity through the relation v, - K-1/2 of Equation (82).
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If Pippard's use of the carrier mean-free-path d (here replacing e from Section 2.3 with d, which could
be the thickness of a film or the diameter of a fine wire) is adopted to define a reduced effective coherence
length 4, we obtain

19, = I& + Ild ,(99)

for which k -, d where Eo>> d. Ifd represents the radius of a fluxoid domain in this model, i.e., 2d is the spacing

between nonsuperconducting regions, a decline in superconduction efficiency can set in as d becomes in-

creasingly smaller. Microscopic-scale d values can lower n, by raising the polaron dispersal parameter 0,
thereby increasing W to cause a lower T. Another effect of short mean-free-paths would occur in the size of
the large-polaron radius y, described by Equation (40). Because y determines no (and hence n,), the nominal
threshold density for superconduction, any decrease in its value would also increase W.

At this point the physical meanings and relationships of the large-polaron radius and the coherence
length may be compared. The cell radius of an isolated polaron y, is a normal-state parameter that determines
the minimum density for which a polaron chain may condense to the superconduction state and is directly
dependent on the transfer integral b. The coherence length Eo on the other hand, emerges from the uncertainty
principle as applied to the wave mechanical nature of the superconducting state, i.e., 0 is larger for smaller
momentum values, and because it varies as (nse)-/2 according to Equation (94), it is dependent on the [
dispersal parameter and is generally smaller for oxides, where x, < 0. 1.

6.8 TYPE-II SUPERCONDUCTORS

As introduced in Section 2.3, the three general categories of superconductors are distinguished by the
relations between to and XL. In reality, only type-I materials (pure superconductors with 4 >> XL) feature a
single critical magnetic field in which the flux expulsion takes place completely once the thermodynamic H,
threshold is reached (in a bulk specimen). In materials of practical importance, however, flux expulsion occurs
over a range of fields, with the limits defined by Hcl S Hc : Hc2. The spatial variation in H,. and q at a iormal/
superconductor interface, shown in Figure 49, indicates that type-II superconductors with i >> I have in-
terfa( fgions set by 4 that is small enough and XL large enough to permit the bulk volume of the material
to divide into islands of fluxoid domains that harbor magnetic flux in their normal cores at a field less than
H,.. With the presence of fluxoid domains, the thermodynamic critical field H, can no longer be measured
directly. A larger field H,2 is required to offset the condensation energy defined in Equation (68) because the
invasion of flux reduces the volume of material from which flux is expelled. As analyzed in detail by
Abrikosov [88] and discussed by Kittel [89] and Tinkharn [90], the critical magnetic fields for clean high-T,.
perovskite superconductors with t - 0 and X - XL may be approximated by

H 1IlH. - [(42)i]-'lnK (100)

and
n, lnH,= (42)K (101)

With K independent of temperature, H, I and H.2 should track with H, as functions of temperature. As

shown in Figure 50, a universal curve with W = 0.8 is fitted to the H. 2(.L) data [91 ] from bulk polycrystalline

(Dy,Eu)Ba 2Cu3O,.
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Figure 49. Variation of H and V1 at the fluxoid/superconductor interface for c << I (type 1) and ic > I (type 11).

1.0

0.6

% %b

0.6%
W. 0.8

S 0.4 - * EuBa CU 30O%%
(Vamagishi 6t1al.)%

0.2 ---- THERMODYNAMIC %
MODEL (1 - 2) %

C ET MODEL % %

0 0.2 0.4 0.6 0.5 1.0
t

Figure5SO. CET calculated curve of Hc2(t)I'J(O) versus t compared with data of Yamagishi et al. 191) for W =0.8.

Another comparison with experiment may be carried out with the values of critical fields estimated from
measurements of aHlc(7)/aTat T= Tc. For W= 1, the slope from Equation (74) is simply -H()T., and the results
of Finnemore et al. [92], aHc(T)IT= -165 Oe/K for YBa2CU3O7 conforms closely to the calculated estimate of
-155 Oe/K, with H,(0) = 14 kOe [computed beneath Equation (70)] and T,,= 91 K. If Equations (100) and (101)
are used with the above approximations and with ic = 63 from Equation (98), the ratio aHl. 2(7W + W,()a
-2K2/lnic = 1920, which closely matches the result of Cava et al. [5]: 13 kOe/K + 7 Oe/K = 1860. It also follows

from Equations (100) and(10 1) dudtfor Hc= 14 kOe, Hc1 -660 Oe and H 2 - 1250 k~e.
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The question of the dirty superconductor may now be examined in the above context. Traditionally, a
type-H superconductor is a metal with a 4 reduced to values below A'L by the presence of inhomogeneities -
"normal" regions that act as nucleation centers for the fluxoid lattice, in a manner similar to the formation of
reverse magnetic domains about pores and grain boundaries in a ferromagnet. As pointed out in Equation (99),
the situation for which XJA =X 'd >> I occurs in metals where d << E, thus limiting the coherence length to
a mean-free path. With the discovery of the high-temperature oxide superconductors with typical ,0- 30 A,
the XA>> I condition appears to exist naturally even in macroscopically homogeneous specimens.

The effect of local or dispersed inhomogeneities in the form of impurities or lattice defects has somewhat
different implications for a metal and for an insulator. In metals, with the greatest charge screening effects,
0>> X, and the effect of inhomogeneities is significant in reducing 4 to set up the conditon for establishing

the fluxoid lattice, which can occur where d << AL. In effect, the impurities in a metal are required for the
creation of a type-Il superconductor through the nucleation and pinning of fluxoid regions at the impurity
centers. In superconducting oxides with finite (measurable) dielectric constants, however, 40 << XL, and the

fluxoid lattice forms in the absence of impurities. Without pinning centers, they may be described as natural
type-H superconductors.

Because the fluxoids are mobile, the inhomogeneities affect the fluxoid lattice only if d _ -, at which

point these impurities serve as pinning centers for the fluxoids. The use of induced inhomogeneities as a
practical design strategy for increased magnetic field and supercurrent capabilities of high-T, materials may,
therefore, be viewed as a method for stabilizing the fluxoid lattice by the pinning of domains about the
inhomogeneities. Without these centers the fluxoid structure is likely to be fluid with the merging and
collapsing of domains increasing as T-+ T. The fluxoid lattice may "'melt" well below the critical temperature
even in materials with d AL(0) because XL(T) increases more rapidly with T for small values of W.

To summarize the results of the above analyses, it has been shown that the magnitudes of .L, Hc, ic and

are all determined by the effective density of supercarriers ne(T). The various relationships are organized
in Table 6, where the parameter values determined in the foregoing analyses are listed with theircorresponding
measured values, where applicable.

6.9 MAGNETIC LEVITATION

Magnetic levitation is the most visually dramatic manifestation of superconductivity, occurring when
the inducement of a diamagnetic supercurrent in a magnetic field attends the expulsion of flux from the interior

of the specimen. An important distinction should now be recalled: A material qualifies as a superconductor
where n. > n, (requiring that T S T,); however, it does not become superconducting until the carrier chain
condenses to form a Meissner supercurrent for H < H. Thus, the supercarrier density is controlled by
temperature, but the supercurrent by magnetic field.

Analogous to the concept of an image charge representing the effects of a metal plane beneath a real

electric charge of opposite sign, the induced supercurrent in a specimen may be represented by a magnetic

dipole, as shown in Figure 51. Because the current produces a diamagnetic moment, however, the dipole

moment would be a mirror image of the external magnet, and the force between them is, therefore, repulsive.
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TABLE 6

Superconductor Parameter Values and Dependence on Carrier Density

Parameter n. Dependence Theory Experiment

AG(0) (n,0)2  8 X 106 106 to 107 erg/cm3

vs(O) (ne)112  8.4 x 106 cm/s

ic(O) (Film) (n)32 6 x 108 4 X 107 amp/cm 2

(Bulk) (nso)

XL(0) (n)- 1' 2  1740 1500 to 2000 A

4(0) (nse)-l' 2  27 20 to 35 A

Ic (= XLI 0) 63 62

H(0) n.e 14 10 to 20 kOe
Tc ns&(O)

Hl0T (T= T) -Hc( O)/ Tc (IWV=1) -155 -165 Oe/K

(aH,/l1) + (aHcl/M7) 2c2/nK 1920 1860

Rs (T=77 K) nr/(ns6)3 2  2 x 10-5 10-5 Q

As pointed out earlier, the spatial ordering constraint of the covalent bond furnishes the eigenstate
rigidity required for the VV, = 0 condition. The celebrated levitation property of the Meissner effect can be
appreciated, therefore, in the context of a magnetomotive force imparted to a current-carrying coil in an
inhomogeneous magnetic field. In a superconductor, however, the current loop will be established on the
specimen according to the disposition of the external field relative to the specimen. Similar to the coil, a
superconducting object will assume an appropriate equilibrium position and attitude in an external field;
unlike the coil, however, there are no restoring forces acting on the specimen when it is disturbed from its
equilibrium position. Because the current path then adopts a different chain of covalent orbital lobes, a new
equilibrium state may be established within the same specimen orientation by altering either the specimen
position or magnetic field conditions.

14=1.61

N S N j Is

DIAMAGNETIC SUPERCURRENT IMAGE DIPOLE

Figure 51. Diagrmmatic representation ofthe Meissnerflux expulsion/evitation effectfrom induced diamagnetism in
a superconductor.
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Without external mechanical assistance to alter the carrier condensation energy (or degree of polaron

alignment) AG (= H.2/8x), the spatial relation between the specimen and magnet is fixed except for rotation

about the magnetic field axis. Rotation about an axis perpendicular to the magnetic field or any translational

adjustment requires an energy input to establish a new equilibrium current condition (thus precluding any

restoring force effects).

The mechanical aspects of the Meissner effect, therefore, lend further credence to the conclusion that

the supercarriers are part of the binding forces of the lattice and do not exist independently as unbound

electrons.
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7. LARGE-POLAI JN SUPERCONDUCTING SYSTEMS

A generic model of the MO energy levels for a metal cation (M) in an octahedron of Iigands (L) is shown
in Figure 52. For simple metal oxides, e.g., MgO, the lower energy bonding orbitals are principally oxygen
states and are occupied by 2p electrons of the stable 02-1igands, while the higher energy antibonding orbitals
represent 3d, 4s, and 4p states of the less stable metal ion (see Appendix A) and are occupied by the corre-
sponding electrons of that particular cation.34 The influence of the crystal field (important for ions of the
transition elements) is indicated by the splitting of the five degenerate free ion 3d states into e and t2g terms.
Where extended delocalization occurs from orbital overlaps that reach beyond nearest neighbors, multiplici-
ties of these MO levels form the energy bands (see Figure 12) used for analyzing collective carrier systems
(i.e., metals and band semiconductors) that involve unbound electrons and holes. For the collective carrier
extreme, a partial band model version of Figure 52 that is adapted for Cu2  is drawn in Figure 53. In the context
of covalent electron transfer, the MO format will be used to survey specific ionic/covalent systems for which
superconduction properties have been reported in mixed-valence (large-polaron) compositions.

14539 l-52

M2+ 4s -2pa

4 p-2Po ANTIBONDING
4p

4s-

-2g NONONDEG

2p - 24M BAND

BONDING 4p-2pa ANION STATES
4s - 2pa 7 (2pa States ordy)

Figure 52. Generic MO energy level diagram for a dO cation in an oxygen octahedral complex.

34 In quantum mechanical terms, the lower energy of the free-ion ligand wave functions XL provide the
dominant contribution to the hybrid bonding state ,= C ,Xu + C I2XL' with C 12 >> Ci For the higher energy
antibonding state , = CI2XW + C, IxL, the reverse is true, with C, 1>> C12. In more covalent combinations,
XM and XL are closer in energy, and C, I - C, 2 in the resulting hybrid orbital.
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7/.1 SYSTEMS WITH 3d-2pc; BONDS

7/.1.1 Cu-2+_-_-C"3+ in A 2BO 4 and Layered Perovskites (p-Type)

Because the superconducting cuprates (Cu perovskites) 3 5 were the principal subject of the original work
on this theory [ 1 ], it is appropriate to begin this discussion with a review of the orbital states and occupancies
of the Cu2+-O 2-- Cu3+ superexchange combination, which leads to superconduction that is confined to select
Cu-0 4 planes that occur as part of the B-lattice oxygen coordinations in perovskite-type lattices.

Although the large-polaron concept implies that the region of mixed-valence condition is local with
carriers tethered to fixed polaron sources, it should be recognized that the valence state is not a fixed entity
in cases where itinerant polarons exist through extended covalent delocalization. In accord with the (CuO)+
molecular ion concept adopted in Appendix B, the transfer cations in these partially covalent compounds
assume average (noninteger) valences lower than their nominal ionic assignments because the bonding

35 In a generic sense, this means 180-deg cation-anion-cation bonds and would include a growing family of
complex oxides with square planar (Cu-) 4) building blocks.
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electrons become shared among the ions, both Cu and 0, within the large-polaron cell. 36 Effects of covalent
bonding have been estimated from the orbital reduction factors of transiton-metal complexes as determined
for paramagnetic resonance measurements of g factors and spin-orbit coupling constants. In the case of Cu2

in Tutton salts, for example, the reduction is about 15% [94]; if applied to the oxide, the actual ionic charges
would be Cu 1.7+ I17-. For want of a suitable systematic means to determine these effective valences, however,
the integer valence values of the free ion oxidation states will be maintained in the discussions that follow.

To examine covalence involving the unfilled d shell of a transition series, it is first necessary to establish
the crystal-field (point-charge model of ionic lattice) splittings for the particular system. In Figure 54, the
order of energy levels for the five 3d orbital states are displayed in the evolution from cubic (0 h) through
tetragonal/orthorhombic (D4hID2h) of the La2_ Sr CuO 4 system, to the extreme cases of pyramidal (C4 ) and
planar (C,1 extreme D4h) coordinations of YBa2Cu304 and the more complex layered compounds. In the
planar model, only the x-y plane is involved, so the last remnant of the cubic crystal field is 10 Dq between
the d2_y2 and d . In the generic MO diagram (Figure 52), the 10 Dq splitting is explained by the energy
instability of the antibonding e relative to the nonbonding t2, states [95]. Under the further influence of the

9
orbital overlaps, the upper dx2_2 (and to a lesser extent d2) then divides into bonding and antibonding states,
while the remaining d states are presented as unchanged in energy and become nonbonding (actually 7c
bonding to the ligand), as shown in Figures 55 and 56 for the tetragonal and square-planar cases, respectively.

In the perovskites with anisotropic superconductivity, the Cu sites are eithertetragonal (with an orthorhombic
component under some conditions, possibly caused by a Jahn-Teller stabilization that occurs as part of the
condensation process) or square planar, and the occupancies of the d states are shown in Figure 57. As previously
reported [ I], the d,2 orbital state directed along the crystallographic c-axis is empty, thereby precluding the pos-
sibilityofc-axissupeconduction. Thedx2 2 antibonding orbital state is the transfer path both for superconduction
in the a-b plane with single occupancy in the Cu2  (d9) member and empty for the Cu3+ (d") member in a low-spin
(S = 0) state. It should also be pointed out that because the Cu3+ (d8) ion represents a positively charged mobile
hole with S = 0, it satisfies the requirements of a boson and could be viewed as such in any interpretation involving
conventional superconduction theory.

The source of polarons differs among these compounds. In the simplest case [2] of the
La3+2 Sr2+ [Cu2+ Cu3+]O4 system with maximum T - 40 K, Sr2+ ions are fixed negative charges in the

A sublattice, and the mixed valence occurs as tetragonally coordinated Cu3+ holes that are electrostatically
tethered to the nearest Sr2+ ions, thus making the conductivity p-type. A modification of this system that
introduces the pyramidal coordinations [49] is La3+2 x Sr2 XCa[Cu 2+ 1_XCu 3)204 with maximum T = 60 K.
As discussed in Appendix D, this modification to the crystal field may explain the increase in T. For the
YBa 2Cu3 O, system with T - 95 K [3], the situation is more complex. The mixed valence occurs here as a
result of oxygen vacancies that establish polarons in both the planes of Cu(2)-O5 pyramids and Cu(I)-0 2 linear
chains; chemical formulas highlighting proposed Cu valence distributions that vary linearly with polaron
concentration (see Appendix D of Dionne [I]) may be written:

YBa2[Cu2+5/2-y/4 Cu3y/43/2]2[Cu2+ 11_3y2Cu3+3y/2-10o1y for 6.67 < y < 7,

36This traditional view has also been expressed by A.W. Sleight in a review of superconducting oxide

chemistry [93].
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and YBa 2[Cu2+ 5/2-y/4 Cu3+ y/4.3/2]2[CuI+o.130-3y/ 2 Cu2 +3y,2_Oy for 6 <y < 6.67

with Cu(I) and Cu(2) site valences v(l) = 1.5y - 8 and v(2) = 0.25y + 0.5, respectively.
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Figure 54. Crystal-field diagrams for the d8 low-spin (S = 0) state: (a) free ion level as zero-energy reference and
(b) least stable dx2_y2 level as reference.
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Figure S7. p-type 3dx2 Y2-2p~a Cu2*-O-Cu3 + covalent transfer in 180-deg perovskite bond geometry for d9 -4 d'(low-
spin).

As suggested by Figure 58, superconduction is likely to occur in the Cu(2)-04 planes of the pyramidal
complex, because the Cu2 ~ content of the Cu(l)- 4 planes would phase over to u' ) at y= 6.67 (see
Figure 59) as a result of oxygen vacancies within the plane that create the Cu(lI)-0 2 chains. Moreover, these
vacancies would break up the continuity of the transfer couplings necessary for superconduction. The origin
of positive mobile polarons, therefore, would arise from the fixed negative charges of 02- ions filling the

vacan whih is b 7.I rught L 2 CU4 [96], the excess oxygen is more correctly described by La 2 ,1Cu 2+1
11u+ 0 4 , whc sbogtabout by La cation deficiencies. As determined earlier, a threshold value ofx

0.08 (or 8 = 0.04) is all that is necessary for the onset of superconduction.
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Figure 58. Ordered A-layer structure of YBa2Cu3Oy, showing breakdown Of CuO 6 complexes as y decreases from 9
(hypothetical in this case). At y = 8. oxygen is removed from Y0 4 planes and Cu(2 ) ions are square-pyramidally coor-
dinated (i.e., CuO.), but retain the C4 symmetry axis. At y = 7, Cu( i) ions become linearly coordinated in the x-y plane
(orthorhombic phase) with uniaxiai superconduction expected; Cu(2) ions retain square-planar coordination in the
x-y plane with planar superconduction possible. A t y = 6, Cu( I) planes are fully depleted of oxygen and Cu(2 ) ions lose
mixed-valence with only 2+ species present (see Figure 59).

Partial verification of th is valence model was reported by Tranquada [41i ], who determined experimen-
tally that the average spin of the Cu(2) ions is 0.66 Bohr magnetons (g.B) at y = 6, and that the Cu(! ) sublattice

is diamagnetic. This result indicates that most of the Cu(2) ions are 2+ (with some spin canting likely reducing
the effective spin values) and that the Cu(l ) ions are I +, which is consistent with the model in Figure 59. The
occurrence of Cu I  ions in the Cu(l)-O2 chains should be expected, because its large radius (- 0.96 A)
precludes occupancy of the Cu(2) pryamidal sites; furthermore, there is already ample evidence for dmo

configurations to favor linear coordinations [97].
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Figure 59. Proposed linear valence model of Cu(I) and Cu(2) as a function of the oxygen content variation and
distribution depicted in Figure 58.

An even more intriguing confirmation of this originally proposed linearCu valence distributionhas come
from the bond valence sum analysis of Brown [52]. The results plotted in Figure 60 indicate that the Cu valence
distribution is basically linear, but with an oscillation about the relevant portion of the linear curve from Fig-
ure 59 that is added here for comparison. Among the implications of these results is the possibility that the
apparent anomaly in the variation of T with y shown in Figure 23 may be explained entirely by the nonlinearity

of the valence distribution with polaron concentration.

Together with the compounds discussed above, the parameters for more complicated layered struc-

tures are summarized in Table 7. In cases where the Cu resides principally in sites with 04 coordinations,
which may provide EL_ > 4 meV (see Appendix D), T -- 120 K. For the Bi3+,(Sr2+,Ca2)U2+(3+)O0
system [6], the optimum Cu concentration x = 0.33 occurs because of a combination of excess O2 (i.e.,

8 0.17) or the occurrence of monovalent calcium [98]. The T1 2+ 2Ca , nCU O4+2,+8 compounds

[99] derive their polaron sources from either fixed-valence cation deficiencies (i.e., excess 02-) or the mixed
valence of TI, which can appear as I+ or 3+ to suit the ionic size or charge requirements of its locale. With
such a dual-mixed-valence condition present, the likelihood of higher polaron ordering, i.e., smaller 1, is also
increased.

Another source of the enhanced T, values could be larger b values that result from a covalent coupling
between the d X2 _y 2 - 2pa antibonding state and the 6s orbital of Bi3+ or TI I+. An increased exchange integral
would give rise to a smaller xr A measurement of the W parameter for the compositions with maximum T,
could help to sort out these possibilities.
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Figure 60. Nominal Cu valence as determined from linear model of Figure 59 compared with valence bond sum
analysis of Brown [521 for YBa2Cu3O y.

7.1.2 Cu'+-O2 '-Cu2+ In A2BO, Perovskites and Layered AB02 (n-Type)

Through Ce + substitutions in A sites and the creation of 0 2- vacancies by a reducing atmosphere anneal,
Tokura et a]. [1030] reported superconductivity with Tc - 24 K in M3+2 t 4+ 2+,-.2~ 1+,+YQ o

z = 0. 15 and y = 0.04. As a consequence, stoichiometry is maintained with a Cu 1+ concentration of x = 0.23.

Although the critical temperatures of this system are not particularly large, and because Nd3+ is

a magnetic rare-earth ion with S = 3/2, superexchange involving the A sublattice may result in

Ce4+ clustering that would lead to larger P3 parameters. T7hese results are very significant and provide

insight about the microscopic mechanism of superconductivity. The substitution of tetravalent cations

into the A sublattice creates negative polarons (electrons), and the appearance of superconduction verifies

the prediction of n-type Cu t (2 ) orbital transfer published in the initial report on the CET model ([I],

Table 1). As shown in the orbital transfer diagram of Figure 61, the d,,2_y2 orbital is again the transfer
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path. Here the Cul+ ions provide the S = 0 states required for spin transfer and the onset on magnetic
frustration in the Cu2+ host lattice with SL = 1/2 (see Table 5). In addition, the existence of n-type
superconduction significantly weakens the argument that high-T, phenomena are based on hole transport
through the oxygen sublattice, i.e., local peroxide 01- formation. For the oxygen ligands to provide
conduits for electrons, 0 3- ions would have to be postulated, which is a situation even more unlikely than
the peroxide case.

TABLE 7

Cu Perovskite Superconduction Parameters

Tc (max) F- a

Compound Coordination (K) x (max) (meV) a

p-Type

La2_xSrxCuO 4  06 -40 0.2 2.5 0.7

La2 _xSr.CaCu204 0 -60 0.2 4 0.7

YBa 2Cu3 0 05 -95 0.25 4 0.57

Bi2(Sr,Ca)3Cu20,., 04 -120 -0.33 (>4) (<0.5)

TI2Ba2CuO6+8 06 -80 (2.5) (<0.5)

TI2 Ba2CaCu 2 0e8+ 05 -110 (4) (<0.5)

TI2Ba2Ca 2Cu30 10+, 05104 -120 (>4) (<0.5)

n-Type

La2_Ce.CuO y 06 24 0.23 (2.5) (>0.7)

Srl-xNd.Cu0 2  04 40 0.14 (4) (>0.3)

( ) Indicate suggested values

Another interesting feature of these compounds is the necessity to create oxygen defects as part of
their preparation. In this case the Cull ions occupy square planar sites (Cu-O4) with an occasional
missing oxygen. As shown in Figure 58 for YBa2Cu 3OY, the Cu(I) sites that are proposed to harbor Cull
ions are also square planar to linear, as y falls below 7. Because Cull ions are usually not accepted in
sites of higher coordination, e.g., octahedral 06, due to their large radii (- 0.96 A), this result is entirely
consistent with traditional metal-oxide chemistry.
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More recently, a primitive layered n-type family Sr2+1 N&(C 2  ' C~)O 2 was reported by

Smith et al. [101]. In this case, the Cu ions reside in planar coordinations with the A-sites forming oxygen-
free layers that are interleaved between Cu-0 4 planes. The n-type compositions are noteworthy because
of the increased T,, = 40 K and the lower value of xmx 0. 14. In the context of the foregoing discussion,
these results may be explained by an E,,that is higher than that of the compound containing Ce&, but
with a larger 0 parameter, as compared in Table 7. This interpretation remains in accord with the general
CET conclusions that Tc through EMP has a crystal-field dependence related to oxygen coordination
(discussed in Appendix D) and that polaron dispersal is essential for high Tc.

To conclude this discussion of the layered cuprate compounds, their superconduction anisotropy
that was explained in the first report [1] will be reviewed. Apart from the fact that these materials feature
mainly uniaxial crystallographic symmetry, there are two specific causes for the absence of superconduc-
tivity along the c axis, i.e., normal to the x-y plane. First, the required Cu2+-O2--Cu 2+ covalent linkages
are not present in the z direction. This condition in YBa 2Cu3 O7 may be confirmed by inspection of

Figure 58 for y:5 7. A second reason for the conduction to be confined to the x-y plane is that the d2

orbital wavefunction (not shown in Figures 57 and 61, but included in Figure 62 for the nickelate case)
is fully occupied in the Cul+, Cu2 , and low-spin Cu3+ ions, and therefore could not provide a transfer
path in the z direction even if the bonding geometry requirements weir satisfied.
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is d 2 (see Figure 62), and the low-spin state must occur partially on both Ni2+ (S = 0) and Ni + (S - I/12)
cattons [55], as explained in Appendix F.

Although the occurrence of conditions for superconduction with the nickelate compounds is prob-
ably tenuous at best, the effects reported lend further credence to the notion that covalence involving d

electrons create S = 0 configurations to produce superconductivity in oxides.

7.2 SYSTEMS WITH 6s, 6p.2po BONDS

In the foregoing Cu and Ni cases, the superconductivity is confined to planar "sheets," e.g., Cu-0 4

complexes, and consequently is two dimensional. This constraint 'results from the chemical bonding
involving the dx2_y.,2 orbital that is peculiar to Cu2+(3+ in crystal fields of tetragonal or orthorhombic
symmetry. There are, however, cubic metal oxide superconductors with isotropic properties.
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7.2.1 Bl4 '-O2--Bis  in ABO 3 Perovskites (p-Type)

The discovery of high-T, superconductivity (T, - 30 K) in the diamagnetic cubic perovskite [ 102]
Ba2 ,_.K] ,[Bi4+,_.Bi5+]O34 brings into focus two important aspects of this phenomenon:

• d electrons are not required for superconduction, because Bi& has only a single electron in
the isotropic 6s shell outside its closed 5d'0 shell and Bi- has an empty 6s shell.

" Cooperative magnetic ordering is not required because neither ion participates in magnetic
exchange (although Bi& is paramagnetic with the unpaired 6s electron).

In this case, the orbital transfer path is 6p-2po-6p, and the directionality of the conduction is three
dimensional but restricted to the x, y, and z axes of the P,.. lobes. The corresponding MO diagram with
electron occupancies is given in Figure 63, with the single electron transfer occurring between the
antibonding 6p-2po antibonding states, again separated in energy by Ehop. Although it is convenient to
think in terms of s-electron transfer because the outer valence electron of Bi& occupies the 6s orbital state,
the actual transfer orbital becomes 6p when the order of energy levels is determined from an MO calculation.
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Figure 63. MO diagram for a Bi4+, P1J + in an octahedral 026 complex.

In this series, the nominal K' concentration for optimum Tc was initially found to be z = 0.4, which
would very likely produce a p-type polaron concentration x < 0.33 if an oxygen deficiency 8 of only 0.04
were present Later measurements [103] on the same system confirmed that the polaron concentration for
the highest Tc is x - 0.3, with Tc falling off quickly as x -+ 0.5. These results are also consistent with
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Ehop < 2.5 meV and b - 0.5 to 0.6, typical of the Cu perovskites; for x < 0.25, the cubic phase of this
family is lost, and there are, unfortunately, no x0 data to estimate the concentration threshold x,.

7.2.2 Pb3+-O2--Pb4+ in ABO 3 Perovskites (p-Type)

An earlier version of this cubic perovskite contained Pb3+(4") as the transfer pair in the formula
Ba2+[BiS+Zb3+Z( z)I/( +z)Pb4+(-z)/(I+z) 0 3 and showed p-type superconduction over a composition range
0.05 < z < 0.35, or 0.045 < x < 0.26, because x = zI(l+z) [104]. In this series the curve of T,. versus x
bears a resemblance to Figure 21 for La2.xSrCuO4 with a maximum T,, = 13 K at x = 0.23, and then a
sharper fall to zero at x = 0.26, thereby suggesting a 0 - 0.7 that is characteristic of the Cu2+(3+) materials.
Pb immediately precedes Bi in the periodic table, therefore the Pb3+(4+) pair has its electron configuration
identical to Bi4 + ) with nearly identical ionic mass and similar ionic radius. In this case, however, the
B-site Bi-+ ions act as the polaron sources, rather than A-site K 1+ (or Ba2+) ions of the Bi4+(5+) compound.

7.3 SYSTEMS WITH 3d-2pn OR 3d-3da BONDS

For the lower part of a d" transition series, only t 2g orbitals are occupied in octahedral coordinations,
and there is no cation-anion a bonding. There are, however, two other possibilities that are diagramed in
Figure 64: First, (Q2g-2pn).(2pn-t2g) bonding that is usually ignored in MO first approximations where ek-2pa
bonding is dominant, and second, direct cation-cation tg-t2g ; bonding with t2, orbital lobes that reach across
the face diagonals of the cubic cell.

7.3.1 TP+-Ti4" in ABO3 Perovskites (n-Type)

The first example of superconductivity in a mixed-valence oxide was reported by Schooley et al.
[105] with the cubic perovskite Sr2+[Ti4+,_ Ti3+,O13_y (T. = 0.25 K), where x = 2y. As stated, it should
be pointed out that the polaron would be negative for y < 1, and the superconductor would be n-type.
In this case the active part of the MO diagram (see Figure 65) is a simple two-level bonding/antibonding
combination with the unpaired spin of the Ti3+ ion stabilized in the bonding state. For the cubic perovskite
structure, the face of a unit cell is shown in Figure 64(a), where the t2, orbital lobes are seen to be separated
by 4(2)a - 5.6 A. With such a long throw across the diagonals, direct dx,-d 0 overlap should be
negligible, and the transfer efficiency rj would be much smaller than in the Cu2Z-O-Cu2+ superexchange
systems, which may account for the very small value of Tc. In this case, (t2,-2pX)-( 2p -t2,) bonds may

be the more efficient transfer paths. As listed in Table 5, other ionic candidates for this type of transfer
are V4+(S ), Nb4" 5+ ) , and Ta4+(S ).

7.3.2 Ti+-Ti4 In AB 2 0 4 Spinels (p-Type)

In the spinel LiTi2O4, the distance between cations across the cube face in Figure 64(b) is one-half
that of the perovskite. Consequently, the b integral for dxy-dxYo bonds is substantially larger, and the
resulting higher carrier density could explain the critical temperatures greater than 10 K. As reported by
Johnston et al. [106], a p-type Li-deficient series with generic formula Li1+, ,Ti,1Ti++3,Ti4-3,]O4
was found to be superconducting for smaller values of z. In this case, Ti4+, are fixed polaron sources

in the A sublattice. With z = 0.2, a B-sublattice polaron concentration of x = (I - 3z)/2 = 0.2 was found
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to have T,= 12.2 K. A maximum T, of 13.7 K was observed in a two-phase specimen. With fixed
sources in a different sublattice, this situation is very similar to the large-polaron Cu 2*_O 2 -CU3 cases,
where the positive carriers have Sp= 0 and the host lattice ions have SL = 1/2 (see Table 5).

Another composition regime of interest for this system is where n-type conduction is created by
substituting excess Li. Because superconduction is observed when x -4 0.5 (c =0), the material behaves
more in the manner of a metal and will be treated as such in Section 8.5.

PEROVSKITE CUBE FACE SPINEL CUBE FACE

* .: - gpN -. * - dy*.**- . .

(a) (b)

*METAL

O OXYGEN

Figure 64. Covalent transfer paths for t2,,-occupied cations: (a) perovskites with t.2 5-t2,a (weak) or t2,-2px-2p-t 2,
(moderate, if x overlas are significant), and (b) spinels with t2. -t2 ca(moderate).
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8. COVALENT ELECTRON TRANSFER IN METALS

Although the principal subjects of this report are the origin and properties of superconductivity in
the high-T, metal oxides, for which theories that apply well for metals fail to explain the occurrence of
superconductivity above T - 30 K, speculation on how the CET theory may apply to systems with
conduction electrons would not be unreasonable.

In Section 3.1 it was pointed out that extrinsic semiconductors might be superconducting at high
impurity concentrations. At temperatures below the excitation threshold, the carriers are bound to their
impurity sources and could be thought of as small polarons. With very high impurity densities, itineracy
through covalent transfer or tunneling may be sufficient to establish the type of real-space carrier cor-
relation discussed earlier. A more interesting (and real) situation occurs in metals, where the free carriers
could be considered to result from excitation gaps of energies in the millielectron volt range within the
conduction band, i.e., the concept of a metal as very narrow-band semiconductor. If the theory of mo-
bility-activated conduction is generalized to include metals, 37 the transition from insulators to metals
would occur at T = Eop/I, as shown in the curves computed from Equation (43) and plotted in Fig-
ure 66. One could, therefore, argue that all materials eventually become insulators before T reaches
0 K. Of the many facets to this theory, the one that must serve as a common denominator for all materials
is the notion that localized covalence is present in the relation of carriers to the their lattice sites. For
materials with a free electron gas at normal temperatures, this would imply that the free electrons are
actually activated valence (hopping) electrons that recombine with their ion sources as the material
approaches an insulating condition prior to condensation into a superconducting state in the limit as T
falls to T,.38 In this sense, Eh p would represent either a gap energy or an activation energy, depending
on whether a collective or isolated carrier approach is used.

8.1 THE GOODENOUGH b PARAMETER MODEL

To introduce the subject of ordered conduction in collective electron systems, it is appropriate to
review some important earlier work by Goodenough on metallic oxides in which relationships of elec-
trical conduction to covalent bonding were proposed. In two comprehensive reviews of metal oxides
[7,42], Goodenough discussed a model for electrical conduction that served as part of the basis for the
CET theory. The main theme of his concept was that the energy of the covalent transfer integral relative
to the energy level separation (or band gap) for the ionization reaction M"1 -+- 0'  + e--U, i.e., b/
U, determines the transition from the localized (small polaron) condition of electron hopping to the beginning

37 At low temperatures an exponential function representing ionization to the free-electron state may be
expected to modify the product of carrier density N and temperature-dependent mobility such that o -

Np7)exp(-Eho/kT), where E bw would represent a local pair-breaking gap energy.

38 This is not a new concept, having roots in the earliest theories of electrical conduction. See, for
example, Schoenberg's introduction [78].
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of collective (large polaron to band) behavior among d electrons in unfilled shells at b -- b,. For values
of b > bC, additional thresholds were defined, as shown in the energy E versus N(E)dE population charts
of Figure 67. For static magnetic ordering, b -* bm where the bands begin to overlap. Eventually, b
approaches the higher threshold bs, and a necessary condition for the occurrence of a BCS-type of
superconduction is established as the two bands merge to a single half-filled conduction band. Within this
format, the material systems were also characterized according to (n, ± c), where n, is an integral number
of electrons in an unfilled shell and 0 < c < I is a parameter to represent the nonintegral case. In the
analysis that followed, both the c = 0 and c * 0 cases were discussed in reference to a complete spectrum
of properties.
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Figure 66. Variation of resistivity minimum as a function of Ek,,.

In the context of the CET theory, c * 0 is the mixed-valence case, and the conclusions of both
concepts are generally compatible. As mentioned earlier, however, for the covalent conditions of the Cu
perovskites, where 1/2 < c < I, single energy levels were used to approximate the narrow bonding and
antibonding e1 bands for the apparent case of b > b. For the mixed-valence situation, the energy pa-
rameter U is not involved, being replaced by the small-polaron activation energy E , but the b - bmn
threshold is a consideration because it represents the point of band overlap (b - U) for the c = 0 case.
This could mean that magnetic ordering should be expected to be correlated with covalent transfer, a
condition that was discussed at the end of Section 3.5. Because static magnetic order threatens the b >
E,.o,, requirement by increasing Eho, this argument lends further support to the notion that superconduction
can only occur with magnetic dilution enhanced by Spl = 0 polarons. One of the points made clear by
the Goodenough approach is the difficulty in describing the state that is intermediate between localized
and collective extremes. In collective covalent systems, where individual orbits broaden into bands, a
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band theory formalism becomes appropriate. Unfortunately, with the overlapping of energy states and
(Hartree-Fock) sc, utions of periodic potentials in k space, local information regarding impurity states and
the influence crystallographic geometries is lost. The BCS theory, despite its profound success in inter-
preting many important facets of superconductivity, does not directly account for effects related to local
electronic structure and chemical bonding.
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Figure 67. Energy-band diagram based on Goodenough's c = 0 case of excited charge transfer (AU * 0 from
Figure 2).

With the CET theory applied to oxides, dipoles occur from the mixed valence created by the
chemistry and off-stoichiometry of a particular system (the Goodenough c * 0 case). This model is based
on the localized extreme, which makes it possible to examine the bonding and electron exchange transfer
in real space for specific compounds where crystallographic considerations are of paramount importance.
In pure metals c = 0, and there are no fixed polaron sources; the question of local ordering and large-
polaron radii overlapping is therefore moot, and a collective model may be applied. There is, however,
a need to retain the CET formalism of real-space covalent interactions to examine another possibility that
arises from the exchange stabilization energy associated with spin-pairing in orbital states.
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Although relationships between the CET theory for mixed-valence (c * 0) oxides and the more
general treatment described above can provide additional insights, the depth and complexities of
Goodenough's analyses include a variety of physical properties that extend well beyond the present
discussion, and interested readers are encouraged to consult the referenced texts. The main reason for
introducing these concepts here lies more in the implications of the c = 0 case (no fixed polaron sources),
which is the usual situation in a metal. Here there are two possibilities, that differ according to whether
the valence electrons per atom are odd or even numbers.

8.2 REAL-SPACE PAIRING IN METALS

For superconductivity in the collective carrier extreme, spin-pairing is required to satisfy the Pauli
exclusion principle. To be consistent with the CET theory the pairing must occur in real space. Unlike
the isolated dipoles of mixed-valence oxides, however, the dipoles in pure metals or intermetallic com-
pounds that would cause dynamic ferroelectric condensation could not arise from mobile ions electrostati-
cally bound to fixed sources. If dipole formation is postulated in metal structures, they would have to
exist locally between adjacent atoms as part of the general bonding scheme through which the sponta-
neous electron transport would be dominant at low temperatures T < Ehopk which is the insulator re-
sistivity regime of Figure 66 for normal carriers. Ehop would be the energy required to break a pair and
create free electrons (quasi-particles in the BCS sense). At higher temperatures (the metallic resistivity
regime of Figure 66), the normal state conduction would be the result of electrons continuously activated
out of their traps to create the partially filled conduction band depicted in Figure 14.

In systems composed of atoms with unpaired valence electrons, pairing must occur through virtual
dipoles as part of the condensation process; for systems with even numbers of valence electrons per atom
the pairing requirement is already satisfied and condensation would be associated with the formation of
correlated polarization of the atomic medium.

8.2.1 Odd Electrons (Virtual Ionic Dipoles)

Consider the simple case of two covalently linked, half-filled orbital states (odd numbers of valence
electrons) that form the one-dimensional antiferromagnetic chain through polarization exchange as pic-
tured in Figure 68(a). If the electrons become localized on their atoms at low temperatures, their spins
would be aligned according to the dictates of the J constant; however, if stabilization is gained by the
creation of dipoles through the reaction

M(t-) + M(-,) =* m+(- -) + M-(l) + AU , (102)

where M is an atom with a single s or p electron (T-) outside a closed shell, and AU is the net energy
that combines ionization potentials, closed-shell stabilization, and Coulomb attractive energy of the quasi-
ionic bond. For the reaction of Equation (102) to be stable, AU>0. In the CET context, therefore, the
activation energy becomes

E M = AU , (103)

and AU is used to set the statistical partitioning for n. in Equation (30), from which n,' and finally AG
are determined through Equations (59) and (60), respectively.
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Figure 68. Conceptual model of the condensation of virtual dipole with S = 0 sites: (a) uncondensed state, T > Tc ,

(h) formation of dipoles, and (c) correlated pair transfer in real space.

Where antiferromagnetic alignment is favored as suggested in Equation (102), a pattern of virtual
dipoles may occur as depicted in Figure 68(b). The conversion of AG to the energy of current density
may be represented by the momentary snapshot of a dipole chain depicted in Figure 68(c) with odd

electrons now paired on the same ion in S = 0 configurations. Exceptions to this rule, of course, would
be the ferromagnetic metals, e.g., Fe, Co, and Ni, where J imposes parallel spin alignments (T).

The establishment of the superconducting state would then take place first through virtual dipole

condensation and then by dipole alignment of the kind described earlier for the ordered large polarons

of the c * 0 case. Similar to the c * 0 case of fixed polarons in an antiferromagnetic lattice, Ehop for
the chain of "condensed" dipoles would also be the energy for thermal activation of an individual electron
and consequently the break-up energy of a real-space electron pair.

As implied above, virtual dipole formation is not likely in an insulator because electrostatic fields,

local or externally applied, are subject to less screening by electrons. Consequently, the dipole formation

in insulators would be more energy expensive than in metals where K is greater, thereby reversing the

sign of AU. In addition, ionic lattices may not readily tolerate the size variations required to accommo-

date, for example, fixed Cu 1 -Cu3+ combinations on a large scale. Moreover, insulators with b values

sufficient to allow covalent transfer must be derived from a bonds, which unfortunately involve the partially

filled e states that are also responsible for antiferromagnetic ordering. With TN - 500 K for these

compounds, the magnetically ordered state would be highly stable at low temperatures, and would pre-

clude the occurrence of the frustration necessary for superconduction.
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8.2.2 Even Electrons (Polarized Atoms)

For the classic soft-metal superconductors, Hg, Pb, and Sn, the outer shells of the individual atoms
have 6s2, 6s2p2, and 5s 2p 2 valence configurations, respectively. These elements are of the unfilled p shell
category defined by Matthias [108] and described in Section 8.4. In their collective conduction states
these paired electrons become thermally excited to form a "free" electron gas, but at very low tempera-
tures phonon excitations are greatly diminished and relocalization of the valence electrons to their original
sites could create a chain of polarized atoms. This result would represent the simplest example of a real-
space pair at each lattice site for transfer through the bonding states in the particular system. In this case
Ehop would also represent the pair-breaking energy associated with the creation of a normal electron
without being reduced by the energy required to establish the virtual dipole.

With both types of metal superconductors proposed, the dipoles formed as part of the condensation
would link covalently within very short distances. Because very high ordering would exist in the absence
of scattered polaron sources, nearly complete participation of the dipoles would be required before super-
currents could begin to flow.

8.3 T, AND THE W PARAMETER

To compare the superconduction parameters of metals with those of the high-T, oxides, it is nec-
essary to examine the basic relation for the critical temperature, now a --bination of Equations (11) and
(39),

T, = (a1) (hvD)/kW
or

T, = (a/2) 9/V , (104)

where it is assumed that Ehp = E., and ke) = hvD. In metals, the Debye temperature is usually less than
500 K and often less than that of its corresponding oxide, particularly for heavy metals like Hg and Pb.
The elastic coupling constant a is also smaller in metals for reasons that relate to the tendency for
covalent compounds to have smaller coefficients (see Table 1), and also because of the larger electron
screening effects in metals (large effective K), discussed further in Section 8.5 and Appendix G.

Perhaps a more intriguing reason for the smaller Tc values in metals lies in the larger values of the
W parameter. One immediate result of the assumption that virtual dipoles may form spontaneously in
an ordered chain is that the cell radius in elemental metals is limited to a single lattice parameter, i.e.,
yp (= x0-1) - 1.19 In addition, because large polarons cannot form in metals xodx -+ I and xw -+ I. The

question of polaron source dispersal is moot in a pure substance, P - 1; therefore if the b integral is
reasonably large, it may also be assumed that TI - 1. As a consequence, W should be substantially larger
than that of an oxide, based on a simple estimate from Equation (39). Based on the earlier observation

391n cases where there are no ligands, the definition of -1p changes from Equation (40); because every site
would be contributing carriers, the maximum x is I instead of 0.5 for the oxide case. Where the metal
has a filled s shell, there are two available carriers per atom, and the supercarrier density would be
potentially a maximum.

112



that W = 1.76 provided a good fit to the universal ne(T)nse(0) versus TIT curve in Figure 41, xlxeff is
readily computed to be 0.83 from the complete relation for W = ln[ l-x/xeff - I which must apply here
because xeff - x,. The variation of W with xlxef is plotted in Figure 69. For this situation, one may
assume that x, x, and that xeff - x.
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Figure 69. W parameter as a function of x/x with regimes of oxides and metals indicated. Note that the linear
approximation may apply only to certain oxides.

In summation, the Tc values for metals could be small because of an inherently low El11"and a larger

W. To estimate a practical limit, consider upper limits for a of 0.01 and E of 500 K. If W = 1.76, then
T should not be expected to reach values much greater than 25 K. The smaller W value (- 0.5) and
higher Tc values for oxides reflects the fact that superconduction can be established with fewer carriers,
i.e., xlx - 0.1. Whereas the available carrier density N is even further reduced in the ABO 3 and A2B0 4

perovskite families because of the presence of several noncontributing sites, critical fields and current
densities are not only fundamentally lower in magnitude but suffer an earlier fall off as T --+ Tc because
of the lower W values (see for example, Figure 41).

8.4 THE MATTHIAS MODEL AND THE PERIODIC TABLE

Prior to Goodenough's work the influence of chemical bonding and the importance of unfilled p
and d electron states in superconductivity had already been inferred by the observations of Matthias [108],
who produced an empirical model for predicting the likely occurrence of superconductivity in many
metals and alloys, as well as for estimating the critical temperatures, according to

Tc - (Va/M) F(n) , (105)
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where V is the volume and M the mass per atom, n is the number of valence electrons, and a is a constant
between 4 and 5. The most curious aspect of this model, however, is the empirical function F(n) that
is reproduced in Figure 70. Simply stated, F(n) means that a first requirement for superconductivity is
the existence of an unfilled p or d orbital shell. Refinements then place an n dependence on T., which
oscillates across the d shell, peaking at odd n values (suggesting that polarization exchange between two
half-filled orbits may increase Ehp) but growing monotonically across the p shell.
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Figure 70. Matthias empirical function F(n) relating Tc to the average nwmber n of valence electrons per atom.

The success of the Matthias criteria for superconductors extends even to alloys and intermetallic
compounds in which none of the individual constituents alone meet the conditions but in chemical
reaction produce the required d or p electron occupation. Like all theories, empirical or otherwise, this
model does not apply universally. Nevertheless, it is sufficiently successful to suggest some important
conclusions that conform not only to the mounting evidence derived from experiment, but also to the
basic premises of CET theory:

• Elements with only s valence electrons, i.e., alkali metals and alkaline earths, are not likely
superconductors, suggesting that free electrons by themselves do not contribute to the
superconducting state.

* Elements with unfilled d or p shells are more probable candidates. This is consistent with
the covalent bond and macroscopic molecule concepts and points to the importance of
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crystallographic geometries. Where s electrons exist in outer atomic shells, it should be
recalled that these electrons descend to p or d MO antibonding bands, as discussed in Sec-
tion 7.2.1.

Ferromagnetic elements from the upper half of the d shell, iLe, Mn, Fe, Co, and Ni, where
e. orbits influence the exchange in typical octahedral coordinations, do not generally pro-
duce superconduction (unless through superexchange with d-pcy bonds), supporting the CET
contention that superconduction and static magnetic ordering are mutually exclusive. These
observations based on the Matthias model can be seen by inspection of the periodic table
presentation in Figure 71.
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If conduction electrons are not necessarily the principal charge carriers in the superconducting state,
and condensation can involve those electrons residing in directed orbitals with overlapping covalent
bonds, the role of the conduction band s electrons remains an open question. Clearly they serve to reduce
local electric fields and increase effective local dielectric constants. In most cases, particularly the
transition elements, overlapping bands may provide the possibility of s electrons condensing into the empty
states of the p or d bands as part of the overall formation of the superconducting state. [Note that crystal
field splittings may not be important in metals, and the 5d orbitals may be degenerate. Nonetheless,
internal spin polarization (Hund's rule) and the highest energy state as the state for transfer must be
considered. This means that the more d electrons, the larger the downward cascade during transfer, and
implies a monotonic increase in E hw (or Eg) with n,]

8.5 THE ISOTOPE EFFECT

As part of this general topic, the initial realization of the importance of the crystal lattice in
superconductivity should be mentioned. Historically, it arose through the electron-lattice interaction
theory of Frohlich [109,110] that was celebrated by the discovery of the isotope effect and later by its
adoption in the electron-phonon mediation of Cooper pairs that form the basis of the BCS theory. The
presence of an isotopic dependence may also be seen in the above review of the Matthias model, where
an M- 1 factor exists in Equation (105) for T"..

Without burdening this text with the details of Frdhlich's formal analysis, his result for the electron-
phonon coupling in terms of the critical temperature is stated as Tc - (mr/M) 12. Experimental support
for this relation was initially found in the simple metals Hg, Pb, and Sn, but universal appearance of the
M-'2 dependence has not been forthcoming, particularly in transition metals where the isotope effect is
generally absent (see Table 8). Because there are no polarons here, Ehop is only a pair-breaking energy
without elastic components, meaning that the coupling constant (x - 0. Thus, the BCS model (or part
of it) may apply best here with E - hvD.

TABLE 8

Isotope Effect In Superconductors

Nontransition Metals Transition Metals

Material Exponent Material Exponent

Zn -0.45 Ru 0

Cd -0.51 Os -0.15

Sn -0.47 Mo -0.33

Hg -0.50 Nb 3Sn -0.08

Pb -0.49 Mo3 r -0.33

TI -0.61 Zr 0

Source: Kittel [73], p. 347.
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The notion of electron coupling by phonon mediation later became a lynchpin of the BCS theory,
where a lattice atom mass dependence turned up again through the Debye temperature E (- M- 112) in the
relation Tc - 9 exp[-I/N(O)V], derived from the following relations [1111]:

A(0) = (h/2it)) ,[sinh(-lfN(O)V)]- - 2(h127c)(o exp[-l/N(O)Vj

I/N(O)V = 1.14 (h/2c)o,/kT, ,
kT = 1.14 (h/2n)w. exp[-I/N(O)V]

CC
or

T - Oexp[-/N(0)V] , (106)

for coupling constant N(O)V << I (weak limit), where N(0) is the density of states per unit energy at the
Fermi level for electrons of one spin orientation, (h/2n)o), is the Cooper pair binding energy - k, and
V is the approximate magnitude of the Cooper pair scattering potential that is generally constant, but
suffers a cutoff and drops to zero for states of energy kE away from the Fermi level. By inspecting
Equation (106) it may be seen that N(O)V (typically :< 0.3) varies directly with 8 through the exponential
function, and it is apparent why the BCS theory does not easily account for 7" values in the 100-K regime,
particularly when 9 itself is above 500 K only for light elements.

In the foregoing explanation of the source of E,,, CET also invoked some of Frohlich's work, but
this time the starting point was his polaron theory for nonmetals [13]. The relation between critical
temperature and trapping energy for the magnetically frustrated situation may be inferred from Equation (1I):

T, E.- (a/2) (hVy) , (107)

where hvD - k- M- ' 2. In the Frohlich derivation of the coupling constant a, however, there is an
additional dependence of v D through the relation for the density of the polaron phonon cloud

C - 2e2( 3m/h3)1/2 Keft- l VD- 1/2  , (108)

where Keff = KKoI/(K - KW) is the effective dielectric constant. Here K and Kop are the static and optical
frequency dielectric constants, and (K - Kow) - Kion, the ionic dielectric constant of the plateau that appears
in the infrared or lattice vibration frequency band. In more general terms, Keff may be considered as
proportional to an effective polarizability, which is expected to increase with valence charge and ionic
bond length and with the polarizabilities of the individual ions, e.g., Ag' + with a closed 4d shell is more
polarizable than K1+ with an argon core even though they have the same radius.

It may be easily shown [1 121 that the dipole moments of an ionic lattice should be independent (in
theory) of M or V, and vary according to

m, = q2E/2C , (109)

where E is the electric field at the ions and C is the elastic constant, so that the dependence on the mass
of the lattice ions would reduce here to U-19. To account for the M- 112 dependence of Fr6hlich's original
prediction, a vo 2 dependence would have to be assigned to Kef-t in order to cancel the v D- 1 2 factor in
Equation (108). This possibility is supported to some extent by the properties of diatomic compounds
listed in Table 9, where a definite monotonic increase in Kff with vD-D 2 suggests the existence of at least
an indirect dependence of Keff on nuclear mass that might contribute to an isotope effect.
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TABLE 9

Dielectric Data for Ionic Compounds [23]

K Kop K-K~m Key vD e 1/

x 10 12 S 1  x 10-64s2 K

LIF 9.27 1.92 7.35 2.42 19.6 0.226 941

NaF 5.3 1.75 3.55 2.61 12.2 0.286 586
NaCI 5.62 2.25 3.37 3.75 7.79 0.358 374
NaBr 5.99 2.62 3.37 4.66 6.11 0.404 294
Nal 6.60 2.91 3.69 5.20 5.26 0.436 254

KCI 4.68 2.13 2.55 3.90 6.16 0.403 296
KBr 4.78 2.33 2.45 4.55 4.97 0.449 239
KI 4.94 2.69 2.25 5.91 4.39 0.477 212

RbCI 5 2.19 2.71 3.89 5.76 0.417 276
RbBr 5 2.33 2.67 4.36 4.23 0.486 204
Rbl 5 2.63 2.37 5.54 3.37 0.544 162

CsCI 7.2 2.60 4.60 4.06 5.25 0.436 252
CsBr 6.5 2.78 3.72 4.85 3.66 0.523 176
Csl 5.65 3.03 2.62 6.53 2.70 0.608 130

AgCG 12.3 4.04 8.26 6.01 5.86 0.413 280
AgBr 13.1 4.62 8.48 7.13 4.38 0.478 210

ZnO 8.5 3.73 4.77 6.64 19.9 0.224 960
ZnS 8.3 5.07 3.23 13.0 11.6 0.293 580

Since the time of the original prediction and verification of the isotope effect, its significance as
a test for superconductivity theories has probably diminished. Examples of the measured exponent values

in Table 8 reveal a variation from 0 to 0.61. In particular, the elements listed may be separated into two
groups, already made familiar by the Matthias model. For the nontransition elements with closed d10

shells, the exponent is approximately -1/2, thereby suggesting that Kerr- v,6t 2. For the transition metals
with largely unpolarizable cores of closed p6 shells (i.e., noble gases), the magnitude of the exponent is

smaller, closer to the CET average of-/4, and in some cases effectively zero. This latter category would

include the high-T, oxides, where multication lattices may also dilute any isotope effect [113].

8.6 SUPERCONDUCTING COMPOUNDS WITH c - 0

Continuing the discussion of p-type LiTi2O4 spinel from Section 7.3, it is appropriate to describe

some further work on this system [1 14,115] in which positive polaron sources were created by excess

Li diluting the B sublattice to produce n-type Li'+[Li'+,Ti3+I_3,Ti4+j+2]O 4. Superconductivity with

TC s. I I K was observed [I 14] or a range of 0< z : 0.1; since x = (l-3z)/(I-z), the polaron concentration

range translates into 0.4 5 x S 0.5. Here the concentration is greater than 1/3, which is the limit antici-

pated for the real-space pairing (the double transfer concept) in a lattice with SL > 0, the question of spin-

pairing must be viewed in a broader contexL
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If one considers the z = 0 case, where Ti3 " and Ti& ions may alternate through the lattice in perfect
order, polaron trapping is still intact but the system is now collective, with no possibility of an isolated
transfer. If one electron changes sites, either covalently or by hopping, it will immediately encounter an
exchange requirement from its new neighbor. This process would mean that an antiferromagnetic align-
ment must already be available, or that the neighbor must also transfer away to restore the original ionic
distribution. The implications for correlated covalent transfer in these n-type materials, where SL = 0,
suggest a conduction mode more like metals with a partially filled conduction band [116], and the spin
alignments may be arranged according to Li+[Ti3+(T-)Tij+(-)]0 4 :: Li' [Ti2+0 _( )Ti ' 13 (-)]04, where
a superconducting electron pair occupies every fourth B site.

An argument for the 2Ti3+ --+ Ti2  + Ti& reactions is based on the comparative instability of the
Ti3+ ion. Because Ti& is the most stable titanium oxidation state, and Ti2  can be further stabilized by
spin-pairing, the above reaction could result in a net energy reduction during a transition to the ordered
superconducting state.

In addition to the semiconducting LiTi20 4 spinels, there are a number of metallic binary transition-
metal compounds, e.g., NbO, NbN, Nb3 SnV 3Ga, that probably represent situations that are partially c #0
cases. These materials have T, values in the 10- to 25-K range and suggest a type of superconductor that
is intermediate between the high and low Tc categories.

8.7 COMPARISON OF METAL AND OXIDE SUPERCONDUCTORS

From the above discussions it is now possible to contrast the superconductivity of metals with that
of the high-T, oxides. As viewed from the CET perspective, the generic difference between the two
classes of superconductors prior to the onset of condensation is suggested in Figure 72 by the randomly
distributed local dipoles of metals as opposed to the array of large polarons centered about fixed charges
that characterizes the oxides. In both instances the population and distribution of the dipoles are dynamic
and controlled by thermal activation processes.

In metals there are no large polarons, and the dipoles themselves are mobile; therefore, supercon-
ductivity occurs only at the lowest temperatures, after almost every available dipole has condensed, i.e.,
large xr Moreover, critical temperatures are further reduced because the activation energy Eh is small
owing to the large electron screening effects (highest dielectric constants). With this situation it also
follows that the carrier density ne(0) is a maximum, and the dispersal parameter -, 0.

On the contrary, metallic oxides feature higher critical temperatures for two reasons. First, the Ehop
values are larger because of lower dielectric constants. A second less obvious cause is that the large
polarons allow the superconducting state to survive at even higher temperatures because ordering of the
carriers can occur at much lower densities, i.e., small xr However, this latter feature of the high-T.
compounds also imposes a limitation on carrier densities. Because the highest temperatures at which
superconductivity occurs are achieved with a minimum of carriers, the superconducting state is tenuous
in this temperature range, and its properties reflect this fragility through reduced W values that were shown
earlier in Figure 47 to limit critical current densities near the Tc regime. Thus, it may be concluded that
although larger E,,p values are present in the oxides, it is the polaronic nature of the conduction that
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creates the small x, thresholds that allow the exaggerated T, values that occur through reduced W ratios,

as indicated by Equation (39). With W = 1.76 typical of metals, the high-Ta cuprates would have critical

temperatures well below 77 K.
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Fig~ure 72. Dipole arrangements before saierconducton condensaton: (a) dispersed polarons in a mind-valence
oxide, and (b) random local dipoles in a m(l.
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Compared with metals, the oxides also have intrinsically lower carrier densities by the nature of
their chemical and electronic structure. It is interesting to note how intermetallic compounds offer a T,
range (10 to 25 K) that is intermediate between the elemental metals and the complex layered cuprates.
In accord with the CET theory, this would suggest that ne(0), Ehop, xt, and 0 would also fall into the
intermediate categories proposed in Table 10.

TABLE 10

Qualitative Comparison of Superconduction Parameters

Material Class n,*(O) TE Fho_ x_ P
Metals Large < 10 K Small Large 0

Intermetallics Medium 10 to 25 K Medium Medium 2! 0

Oxides Small > 25 K Large Small 0.5

One may conclude, therefore, that the promise of high-T, superconductors for high current appli-
cations could be somewhat illusory because of the sparseness of supercarriers at the higher temperatures.
On the other hand, critical fields are intrinsically larger than in metals as a result of the reduced electro-
static screening (smaller K). In the present state of the art, critical temperatures of the oxides may be
increased further by seeking out compounds with higher E,, p and by improving the dispersal of the fixed
polaron sources [1]. As shown in Figure 73, where model curves of n" versus T based on Equation (65)
and normalized to the approximate ne(0) = Nnax value for YBa2Cu30 7 are plotted for different P values, 4

the advantages of improving the polaron ordering are illustrated. Smaller 0 values increase the effective
carrier density at low temperatures, but they also further reduce the W parameter, thereby causing even
earlier falloffs in the nt(t) function. For 0 <0.375 the optimum carrier concentration x = 0.33, which is
the value proposed in Section 5.1.5 as the maximum possible for the real-space pairing option. Conse-
quently, the low temperature enhancement of n. would vanish when 0 is reduced below this level, but
the advantages of better polaron dispersal persist at higher temperatures because of the increased T,
values.

To place these estimates in a clearer perspective, a proposed supercarrier region for metals is drawn
in Figure 73, emphasizing their dramatic difference with the oxides and their inherent advantages for high
current density applications and low temperatures. Based on the estimates for the high-T, cuprates, the
current density limit for YBa2 Cu3o 7 could be raised by a factor of 2 over the value 4 X 108 amp/cm2

at T = 0 K (calculated in Section 6.6) and by a factor of 5 at T = 77 K. Based on the data presented
in Figure 47, a YBa2Cu30 7 superconducting film with ideal crystallographic homogeneity and optimized
polaron dispersal would have a critical current density of approximately 5 X 10" amp/cm 2 at T = 77 K.

4°Equation (65) may be modified according to ne(T) = n:(0)[i -exp(-Eh/k7) • exp(W)], where W is defined
by Equation (39). For each calculated curve of Figure 73, Eho = 4 meV, x, = 0.04, and the transfer efficiency
11 was assumed to be unity at the concentration values for peak T,, which are defined by x. = (8p)" for
x up to 1/3 (see Figure 24). For 0 < 3/8 (or 0.375), the 0 values have no further influence on x, and therefore
permit no additional enhancement of carrier or current densities at T = 0, as indicated in Figure 73.
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Figure 73. Temperature dependence n' supercarrier density for values of dispersal parameter P = 1, 0.6. 0375, 02,

and 0. ne(T) curves are referenced to N. of the P = 0.6 curve, typical of YBa 2Cu30 7.

Perhaps a better basis for comparison would be the product T.W (= Eo/k), which may be thought
of as a figure-of-merit temperature Tom. For example, intermetallic compounds such as Nb3Sn that feature
T, - 18 K and W - 2 yield Tf.. - 36 K, while high-T. polaronic cuprates have Tc - 90 K and W --
0.5 to give To, -, 45 K. Although these two material types differ substantially in their regimes of
applicability, Tfo, in either case could be raised by increasing the gap or trap energy Eh. As discussed
in Sections 3.2 and 8.5, this could mean lower dielectric constants to increase the polaron coupling
constant a and (as Matthias suggested) smaller atomic masses to raise the Debye frequency vD.
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9. SUMMARY AND CONCLUSIONS

In this study of superconductivity, a reassessment of the mechanisms for creation of the ordered
conduction state has been presented, inspired by the unexpected discovery of the phenomenon in tradi-
tional perovskite insulators. The CET theory was initially an interpretation of the electrical measurement
data gathered from these materials. In a broader sense, however, it represents a departure from conven-
tional thought on the subject of superconductivity that is based on the idea that the superconduction
mechanism is intimately tied to chemical covalent bonding in all systems. The fact that its earliest
observation happened to be in metals probably obscured this possibility and led to the assumption that
supercarriers were exclusively derived from a free electron gas. According to the CET theory,
superconduction occurs in insulators because of bound electrons delocalized from their parent ions and
in metals because of free electrons returning to their parent ions.

Although macroscopic concepts like the two-fluid model and the microscopic theory of electron
pairing in k space correctly observe that some constraint to the free-electron gas is required for compat-
ibility with the London equations, the link to chemical bonding suggested empirically by Matthias [108]
and explored qualitatively by Goodenough [7] as part of his comprehensive study of metallic oxides has
been largely ignored.

The covalent transfer concept is deduced from previous contributions outlined in the partial evo-
lution of superconduction theory illustrated in Figure 74. Beginning with the phenomenology of super-
conductivity, the chart defines the two basic origins as the
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Figure 74. Partial historical summary of superconductivity theory development.
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" Two-fluid model of Goner and Casimir, whereby normal and superconducting carriers co-
exist with a condensation to the superconducting state occurring below a critical tempera-
ture.

" London equations [91, which define the spatially ordered carrier constraint VnS= 0 that serves
as the basis for the Meissner effect and from which evolved the concepts of penetration
depth (London) and coherence length (Pippard [II]).

Later theory by Ginsburg and Landau [12] generalized the notion of coherence with the introduction of

a quantum mechanical wave function for the ensemble of supercarriers through the solution of a
Schrodinger-type equation. The role of electron-phonon interactions in combination with the idea of an
energy gap was introduced by Fr6hlich [109,110], whose efforts led to the prediction of the isotope effect.
From this background evolved the microscopic models, particularly that of Bardeen, Cooper, and Schrieffer
[8], which have successfully explained many of the experimental mysteries associated with this remark-
able phenomenon in metals.

As indicated in Figure 74, the CET theory evolves from the conventional track in most respects,
but departs from the microscopic models through its assumption that only electrons in bonding states
participate in superconduction. With this premise, the macroscopic molecule and two-fluid concepts
follow directly, and the electron-lattice interaction is accounted for by thermally activated electron hop-
ping that represents the conduction mechanism for normal electrons.

There are two aspects of CET that are fundamental in comparing it with the BCS theory. The first
is the role of phonons, which limit the number of carriers available for superconduction through thermally
activated hopping and destroy superconduction when the density of hopping electrons exceeds a limit
determined by the large polaron radius and the degree of polaron dispersal. Unlike the BCS theory,
however, there is no requirement for phonons to mediate the pairing of electrons in k space, and, con-
sequently, no need for their existence as T -+ 0 K. In the BCS theory superconduction is destroyed by
k-space pairs breaking up as a result of temperature increases that reduce the pair gap energy A(T). In
the CET case pairing is in real space, resulting from local magnetic exchange between neighboring ions
and is destroyed by thermally activated hopping. The second important aspect of the CET approach is
the requirement for S = 0 ions in a medium of long-range magnetic disorder (frustration), where the
activation or pair-breaking energy Eh,, is reduced to the low millielectron volt range. Although there is
no temperature-dependent energy gap for paired electrons, E., represents a counterpart but differs in its
invariance with temperature - a trap instead of a gap.

Another important parameter of this model is W, the ratio Eho/kT. In collective electron systems
(metals), W is typically 2, approximating the BCS ratio A(0)/kT, = 1.76. For polaronic materials W can
be smaller, depending on the polaron range and dispersal, and it is shown how the T, values can be higher
than in a collective system. It also follows, however, that there can be a price for this 7" advantage in
the form of lower critical magnetic fields and current densities as T -+ T".

In spite of the simple exponential diffusion function employed to partition normal electrons from
the total electron population, agreement between theory and experiment in several areas is remarkably
good. The fits of theory to data for critical temperature as a function of carrier concentration; the
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agreement between normal resistivity as a function of temperature; the variations of critical fields and
current densities with temperature; the experimentally verified values for penetration depth, coherence
length, and microwave surface resistance; and the prediction of the coexistence of TN and T, = 0 that
signals the simultaneous extinction of magnetic order and the onset of superconduction, offer strong
evidence that the model may represent a large part of the reality involved. Of the physical parameters
for which values were assigned in the calculations, Ehop, xt, a, K, and b fall well within the range of
measurement or expectation for the perovskite crystal systems. Because there is no independent method
of determining 0, its value was chosen for best fit to the data. The values of 03 < 1 (real-space pairing
case) are reasonable, however, indicating that the polarons are dispersed better than in a random distri-
bution in accord with Madelung electrostatic energy considerations.

Principal features of the CET theory are summarized as follows:

" The critical temperature T . is directly dependent on the concentration of available
supercarriers. In polaronic oxides, this concentration has a maximum of x that is set by the
chemical composition, and the effective supercarrier concentration xeff is determined by the
efficiency of the covalent transfer mechanism and the degree of polaron dispersal.

" Thermal activation of electrons into a collective continuum is a basic process that limits the
supercarrier concentration in all superconducting materials, not only mixed-valence ionic
compounds, and represents the cumulative result of electron-phonon interactions. At higher
temperature (or lower Ehop), randomized hopping can create carriers that produce metallic
resistivity behavior in the normal state, with a positive linear slope for high-Tc materials
above T - Ehohk. Temperature characteristics of normal conduction, therefore, result from
two competing factors: a mobility that decreases with temperature and a mobility-activated
carrier population that increases with temperature.

" The electrostatic/elastic polaron trapping energy E., is inversely dependent on the effective
dielectric constant that screens the local electric fields, i.e., Keff- , through the a coupling
constant, which may partly explain why the TC values of metals are lower than for oxides.
Although polarizabilities are expected to increase with valence charge and ionic bond
length (or with the polarizabilities of the individual ions, e.g., Ag"+ with a closed 4d shell
is more polarizable than K' with an argon core even though they have the same radius),
elements with the covalent capability required for superconduction also tend to be more
polarizable. Therefore the task of raising Tc may reduce to the search for a material with
lower Keff that has enough covalent electrons for superconductivity.

" The transfer integral b of the covalent bond is a fundamental parameter for determining
whether superconduction is possible. If the stabilization energy from the covalent bond
(- b) permits a transfer mechanism capable of overcoming the thermal activation (or pair-
breaking) energy Ehop, the London macroscopic molecule may then form as the basis for
the superconducting state, which permits spontaneous electron transfer without requiring
the stimulation of lattice vibrations. Large b values not only help to optimize the value of
XeMg, but also lower the threshold polaron density x, which, in turn, raises the value of Tc
through the approximation T7 - (Ehok) (xdIxt).
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" Long-range magnetic frustration, antiferromagnetic in oxides or ferromagnetic in metals, is
a prerequisite to superconduction because the exchange contributions to Eh. are large enough
to negate the basic b > Ehop condition. The most convincing experimental evidence of this
effect is the simultaneous observation of TN,T , .  0 in the high-T,, perovskites at a con-
centration threshold where large polarons merge to form an ordered chain of covalently
linked cells.

" S = 112, S = 0 adjacent cation pairs, representing the mobile molecular ion of an isolated
polaron, are necessary to establish the magnetic frustration condition in mixed-valence
oxides and to provide boson carriers for statistical compliance with the requirements of a
superfluid state.

" Polaron dispersal in the perovskites (characterized by the probability-related parameter P3)

can have a great influence on the effective number of supercarriers through a direct
relationship to the W parameter. Where dispersal is less complete, as in the case of the
La2 xSrCuO4 system, a parabolic-type of T, versus x curve occurs with a resulting peak
in T,.

" The occurrence of Cu3+ in the Cu-0 5 pyramidal sites of YBa2Cu30 7 may be approximated
by the linear function proposed originally [I], in general accord with the results of valence
bond-sum analysis [52]. Also modeled by a similar linear function, Cul* ions appear al-
most exclusively in the linearly coordinated sites of the nonsuperconducting Cu-0 2 chains.

" Electron pair carriers exist in real space because of local Pauli principle requirements.
Because ordered states are not generally subjects for statistical analysis, the occasion for
pairing, which appears to be well established by the double electron charge effects observed
in flux quantization and Josephson junction phenomena, must lie beyond simply a require-
ment to satisfy Bose-Einstein statistics. As summarized in Table 11, the pairing occurs
between spins (S = 1/2) of adjacent cations and as paired electrons in outer orbits, occurring
naturally or as part of induced dipoles. In antiferromagnetic systems, a dynamic or spin
wave ordering might be anticipated.

* The decrease in Gibbs free energy AG results from a dynamic dipole ordering similar to a
ferroelectric transition but with the energy converting to kinetic instead of thermal, thereby
maintaining the adiabatic nature of the condensation. Dipole ordering satisfies the neces-
sary and sufficient Vn, -- 0 condition of the London theory. In this model AG derives its
temperature dependence through its quadratic relation to nse. Furthermore, AG is not di-
rectly related to either Ehop or TC, thus differing from the BCS version that depends on the
gap energy A(7) as indicated by Equation (G-l). Larger AG from the low symmetry of
high-To cuprate lattices (see footnote 27) may account for higher H. values and the possible
enhancement of other parameters that depend on the condensation energy.
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TABLE 11

Superconduction Pairing Arrangements

Ion Mix Bonding Transfer Spin Arrangement Carrier Example

c * 0 e-ps Oxide (--)("-)(4)(T-) = (--)(T-)(--)(T-) p-Type Cu2 (3 . )

s-pa Oxide Bi4*(S*)

Pb3+(4*)

($) (-) (-,)(-) = (-,)(-)(--)(-) n-Type Cu1.(2.)

t24 -2g Oxide (--)("-)(-4)(1"-) = (4)("-)(--)(t-) p-Type Ti3 (4+)
V4.(5.)
Nb4+(5+)
Ta4*(5*)

C 0 t-t Oxide (",)(--)(--)(--) = (--)(--)(--)(f,) n-Type Ti4+(3+)

(,- ,)- (--)(1)(--)() n-Type Ti4 . (2 *)

c = 0 Odd-n (f,)(--)(f,)(--) (--)(f,)(--)(t,) n-Type NbTi
t4-t2g Metal

C = 0 Even-n (lI)(i")(T)(f) ("1)(Tf)(f')("l) n-Type Hg, Pb,Sn
s2,s2p2 Metal

Parameter values depend on the effective supercarrier density ne (as summarized in Table
6). Among the significant results are the dependences of Hc and ic on n, which lead to
exponential tails in the i,(T)lic(O) versus TIT. curves that include an inflection point at
T/T,. = W/2 on the HT)/lHc(O) curve. For materials with smaller W values, such as the
high-To perovskites, the critical fields and current densities are correspondingly smaller as
T -- T,; therefore, it may be concluded that higher critical temperatures achieved with fewer
carriers occur at the expense of reduced magnetic field and current carrying capabilities.

Tle ratio K (= XL/O) in perovskites is independent of n: (and therefore temperature) with
values >> I for the high-T compounds, thus suggesting that these materials are natural
type-U1 superconductors. As a consequence, the fluxoid lattice that exists at magnetic fields
above H. would be unstable because the domains are not pinned to impurity sites or
nonsuperconducting regions. The occurrence of the smaller coherence lengths supports the
proposal that carrier velocities are larger in these semiconductors because of higher local
electric fields that result from lower dielectric constants, i.e., vs - K -I.

* The periodic table may serve as a map for discerning superconductor categories. Where
c * 0, transition cations in oxides with unfilled e. orbitals at the upper end of the d" series,
or mixed-valence combinations of Pb and Bi in oxides may form high-Tc compounds. At
the low end of the d" series, elements with unfilled t2, orbitals (odd-electron case) may
provide a CET mechanism by direct cation-cation transfer either in oxides or metal struc-

tures. In metals where electron pairing already exists in the atomic states (s2 or s2p2), direct
real-space pair covalent transfer may occur via combinations of s and p orbitals.
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In summation, all superconduction properties are controlled fundamentally by the volume density
of superelectrons. The total number of conduction electrons is determined by chemical composition
(including substitutions). The fractional population available for superconduction is principally a func-
tion of temperature within the limits imposed by the trap energy (Ehop), imperfect polaron dispersal
(P < 1), and covalent transfer efficiency (TI <_ 1). Finally, the density of superelectrons actually partici-
pating in a supercurrent is controlled by the magnetic field. Based on this view, ideal superconductivity
would require a small dielectric constant (to increase Ehop), strong covalence between participating lattice
sites (TI = 1), and perfect chemical and structural homogeneity (P = !).

Among the superconducting materials currently known, interesting contrasts exist between the
high- and low-T, groups. The oxides are principally ionic with a covalent component and feature lower
K constants to provide the larger Ehop energies necessary for the high T, values. With their small x,
thresholds, the reduced W values that result cause an additional enhancement of T.. Unfortunately, the
density of superelectrons in these materials is limited by the multication chemical formulation and the
imperfect cation ordering that further reduce the maximum current density at higher temperatures through
reduced W values. On the other hand, low-T, metals and intermetallic compounds have intrinsically higher
carrier densities and close to ideal chemical order but suffer from the high dielectric properties of free-
electron conductors.

For metals, the problem of low T, must be solved without reducing W, requiring reduction in
polarizability without decreasing carrier density. For polaronic materials, the problem of low W must be
solved without reducing T,, requiring an increase in carrier density without increasing polarizability. In
this latter case, the effective carrier density could be increased by improving polaron dispersal. The
resulting increase in T,, however, would be accompanied by an unwanted decrease in W.
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APPENDIX A
SELF-CONSISTENT MOLECULAR-ORBITAL THEORY

In this study of charge transfer between a-bonding orbitals of adjacent ions, the energy level
structure and corresponding molecular orbital functions that are composed of linear combinations of the
individual eigenstates may be calculated by the self-consistent (Hartree-Fock) approximation [ 117]. For
the present purposes the analysis of the two-level model in Figure A-I is sufficient to describe both the
formation of bonding and antibonding MO states, as well as the physics of electron (or hole) exchange
transfer among similar ions in a region surrounding a polaron source.

14S.1-72

TWO-LEVEL PERTURBATION MODEL

A.

XM ,

E,,

EL XL ..

A_

MOLECULAR-ORBITAL STATES

t
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4I
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S  

)+

I sI
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Figure A-I. Definitions of MO bonding A- and antibonding A+ states: (a) conventional perturbation format, and (b)
molecular-orbital format.

To treat this system by perturbation theory, the Hartree-Fock Hamiltonian is expressed as

ff = 'L+ AM  ,(A-i)
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where I' and f. are the respective metal and ligand Coulomb energies in the lattice before applying

exchange stabilization. In the usual manner, the Hermitian matrix elements If = (Xi I NJ X) between the

i and j unperturbed wavefunctions are formed, and the secular determinant becomes 1117]

MI I -A 12  EL-A B-AS

= 0, (A-2)

f2I 2 -A B-AS EM-A

where

B = (XL hi XM) = (EL + EM)S (exchange integral)

S = (L I XM) (overlap integral) (A-3)

The eigenvalues follow as

(EL + EM)(I-2S2) ± [(EL - EM) 2 (l-S 2 ) + B21/
Al: = 2l2)(A-4)

The coefficients c0 of the MO eigenvectors j= ¢ijj are thus found from the row x column

products summarized by the relation

, (1i - ^,8,j) c = 0 , (A-5)

Where C ii2 =I
J

Accordingly, the determination of 01 and 02 follows from Equation (A-5):

(EL-A)c!l + (B-AS)c1 2 = 0 , c 1
2 +C 1 2

2 = I

and

(B-A.S) C2 1 + (EM-A+) c2 = 0 , C2 1
2 +c 2 = 1 . (A-6)

An exact solution of Equation (A-6) yields the coefficients

- (EL + EM - A)s
Cl .[(EL +EM-AJ) 2S 2 +(EL-A.) 2]
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SEL- A_

4[(EL + EM- A)2S2 +(EL- A_) 2]

- (EM - A+)
2 -4[(E, + EM - A)2S2+ (EM - A+)2]

(EL + EM - A+)S (A-7)
= '[(E,, + EM - A )2S2 + (EM - A,) 2]

If S 2 << I, the coefficients of Equation (A-7) can be put in the more useful form of

I 1/2
c = (1P42) +

0[l + S2 + Q2(i + 5S 2) + 2QS(I+ S2)'(l+Q2 )]

1 1/2

c2 = (4P[2) j - [ + S2 + Q2(1 + 5S2) + 2QS(I+ S2)'J(I+Q 2)]

c21 = (1/2) 1 - [ + S2 + Q2(l + 5S 2) - 2QS(I+ S2)4(1+Q 2)]

1 r(2

S(1[/42)1 + qI + S2 + Q2(l + 5S 2) - 2QS(I+ S2)4(I+Q 2)] (A-8)

where Q = BI(EL - EM), and the minus sign before the 2QS corresponds to the antibonding state defined
below. As discussed in Ballhausen and Gray [117], correction factors are required to reestablish
orthonormality of the eigenstates where S * 0:

C11 = C11X, C 12 -= C12 X; C 2 1 = C2 1Y, C22 = C22Y , (A-9)

where X =(c, ,2 + C122 + 2cl 1C,2S) - 112 , and Y = (C2 1
2 + C22

2 + 2c2 1C22S)-1/2 . The normalized MO functions
become
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C= I L4 C12XZM (bonding)

and= C21 XL 4+ C22 XM (antibonding) (A- 1)
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APPENDIX B

THE Cu"+O2- MOLECULE

When a charge unbalance is created by substituting a Sr2  ion into the La3+ sublattice, a question
arises immediately about the manner in which electrostatic neutrality is preserved. Because La2.-Sr1CuO 4

is principally an ionic material, the hole is not excited but exists by virtue of the Sr2  substitution - it
is better described as a (CuO) + polaron bound to its Sr2 source and transported through activated mobility.
In polaron notation, La2_,SrCuO4 could be expressed as (La2_,Sr) 1 -(CuO 4)x ; therefore, analysis would
logically begin with assignment of the hole to a lattice site adjacent to the Sr2+ source, with the simplified
(CuO)+ molecular ion as the polaron that moves among CuO molecular lattice in the attractive field of
the negative charge represented by the Sr2+ acceptor [31]. This calculation begins with the derivation
of the MO energy level scheme for the 3d-2pa states of the CuO molecule.

In the cuprate systems, the Cu2 (3 ) occupy tetragonal (slightly orthorhombic), pyramidal, or square-
planar oxygen coordinations. To appreciate the origin of the molecular energy levels, a generic model
is developed based on the point-charge crystal-field concept, as shown in Figure B-I. If the ionic
character of the ligands is represented by their valence charges, the five d orbital states are split by an
energy parameter A,, with the t. functions stabilized by (3/5)Af and the e. levels destabilized by
(2/5)Aq. In cases where the crystal-field approximation is sufficient to describe the physical phenomena
observed, e.g., optical spectroscopy, this quantity is called 10 Dq. In reality, however, 10 Dq also in-
cludes the splitting caused by the covalent interaction, because the ligands have an additional coupling
with the cation in the form of orbital wavefunction overlaps, usually p orbitals that form or bonds with
the e. states and weaker x bonds with the t2. group. As a consequence, the e. states are further de-
stabilized by A.,, as determined by the calculation technique in Appendix A. To a first approximation,
the x-bonded t2. states are treated as unperturbed by the covalence, hence the term "nonbonding." As
indicated in Figure B-I, a more correct relation for the main optical wavelength splitting is given by

10Dq = A.. + AM  , (B-I)

where Ao/10 Dq - 0.3 based on the orbital reduction factors inferred from electron paramagnetic reso-
nance (EPR) spectra [94].

Working MO diagrams for Cu-OY are given in Figures 55 and 56. The basic building block is the
Cu2+-O2- molecule, therefore calculations will focus on these two components with the relevant potential
energies as depicted in the basic two-body model of Figure B-2. As noted, the lattice energy determined
from the simple electrostatic attraction41 (with a reduced Madelung constant M' to correct for the Born
repulsion contribution shown in Figure B-3) is -M'qcaqoxe21ro. The appropriate value for M' - 1.5, which
is only slightly below the typical Al of simple oxides [1 18], because E= - 43 eV for CuO [1 18], for
r0 - 2 A in the Cu-O4 plane, and q, = + 2 and q,. = - 2.

41 This approximation is being used in lieu of a more complete analysis based on the series summation

of interactions over multiple groups of neighbors. Because the present exercise is intended mainly to
illustrate a theoretical methodology for estimating the MO functions and the associated exchange integral
b involved in the electron transfer, the analysis is limited to only the immediate ionic interactions.
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arises from the basic point charge approximation; the additional Am destabilization of exa comes from e,-2pa bonds.
In this case, the ratio AmliO Dq is scaled to 03.
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Figure B-2. CuO molecule approximation to the complete lattice energy Ei -43 eV, using a Madelung constant At
- 13 to represent the effective electrostatic fields that determine the respective cation and anion energies.
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Figure B-3. Born-Mayer function for CuO, indicating corrected Coulomb attraction curve of Madelung energy to fit
the E,,- -43 eV result. Correction is made by reducing At from 1.5 to 1.4.

If the Coulomb interactions within the CuO molecule are then based on this effective Madelung
energy (-43 eV), the stabilization energy of the outermost d electron on the Cu2  ion may be taken as
-15.3 eV, found by combining the outermost electron stabilization energy of free Cu2+= -36.8 eV [ 1181
(in this case the third ionization potential of neutral Cu) with the energy of the 0 2- Coulomb repulsive
potential energy M'qoe 2Ir0 = +21.5 eV. Similarly, the stabilization energy of the outer 2p electron on
02- is chosen as EL = - 23.9 eV, determined from the electron affinity of O1- = 2.4 eV,4 2 combined with

42 An estimate of the ionization potential for 0 2- may be obtained by combining the heat of formation

of hydrogen peroxide [1 19], with the electron affinity of the 0 atom, which has been well established
at 1.46 eV, according to

H20 2- (liq) + 0 (gas) - H2 0- 2 (liq) - 0.96 eV

and
0 + e- -- 01- + i.46 eV

Because the peroxide is formed by replacing the 02- ion of the water molecule with what amounts to an

021- ion (or a bonded pair of O - ions), still retaining the 1 !0-deg bond angle, the repulsion energy of the two
01- ions can be ignored, and the heat of formation reaction may be abbreviated as

02- + 0 --- 20 1- -0.96eV

therefore, the ionization potential 02- is found to be 2.42 eV, as deduced from the subtraction of the
above equations:

01 - + e 02- + 2.42eV
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the stabilizing energy M'qce2/ro = -21.5 eV of the attractive force between the outermost electron on the

02- ion and the double positive charge on Cu2 . If AIf - 1.25 eV is estimated from the total 10 Dq, it

may be assumed that the uppermost d2_y2 orbital is destabilized by - 0.75 eV. The net stabilization

energy of this orbital then becomes EM = -14.55 eV, and one may begin to examine the details of the

energy levels in Figure B-4. With these values for the unperturbed energy parameters, B = (EL+EM)S -

-38.45 S eV, and there remains only the assignment of a value to the overlap integral S.

14MS1 .- 6
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-15.3 eV 5V a eA + -- 13.95 eV

----- -- ,Dq
,, 23.9 eV

t ~
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#b-O.9 7 ZL+O 1 5 ZM 'b -bEL
'b e A A_---24.11 eV

Figure B-4. Composite energy level diagram for CuO model, combining lattice energy estimates, point-charge crystal
field splittings, and MO splittings.

It is probably judicious to treat S semiempirically, because 10 Dq has been established by optical

absorption as 1.57 eV (12,600 cm-') [120], and try for a reasonable fit through A.. From Equa-

tion (A-4),

A+ = (EL+EM)(I-2S 2) + 4[(EL-EM) 2(I-S 2) + B2] (B-2)
2(1-S2)

and
A. = A+- EM (B-3)
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Toward this purpose, a value of S = 0.10 produced a result of A. = 0.60 eV, thus yielding a computed
value of 10 Dq = 1.25 + 0.60 = 1.85 eV, approximately 18% higher than the value determined for the
Cu(H20) 62+ ion. The calculated value for 10 Dq appears quite reasonable, because this case places the
Cu2  ion in a strong tetragonal field with substantial covalence. Applying this value of S = 0.10 to the
foregoing analysis,

B - -3.85 eV,

A+ =-13.95 eV, (B-4)

A - -24.11 eV

A further indication of the reasonableness of these estimates may be seen from the energy separation
between bonding and antibonding states, AA = A+ - A_ - 10 eV, which is consistent with the band gap
(between the bottom of the metal t2, and the top of the oxygen 2pn bands) values (- 5 eV) for transition-
metal oxides [ 121] after corrections for 10 Dq and the widths of the upper and lower bands are taken into
account. [Note that the magnitude of B - 4 eV in Equation (B-4).]

Upon substituting the above parameter values into Equations (A-6) through (A-10), the resulting
MO eigenfunctions become

= 0.24 XL - 0.99 XM (antibonding)

and
= 0.97 xL + 0.15 xM (bonding) (B-5)

From this result the probability of the ligand participating in the antibonding state is C2 1
2  0.06,

which means that the hole carrier in this model is, not surprisingly, greater than 90% associated with the
Cu cations and that the influence of the covalence enters mainly through the destabilization of the e.
antibonding state. The delocalization of the unpaired electron, therefore, is largely within the Cu sublattice
through the overlap of the e. and pcy or pya orbital wavefunctions. It should also be pointed out, how-
ever, that if different parameter values were assumed in the initial conditions, e.g., that the ligand XL be
less stable than the metal ZM, the MO calculation would place the hole more on the ligand sublattice.

An alternative approach to this last question is summarized in Table B-1, where the two extreme
valence possibilies for (CuO) molecular ion are compared in terms of traditional ionic bond energies:

" The hole is in the Cu sublattice (the conventional approach), according to (LaSr)--(Cu3+O2-)

• The hole is in the 0 sublattice (the peroxide scenario), according to (LaSr)--(Cu2+OiT.

Although both options may produce the Sp = 0 requirement for TN -# 0, i.e., Cu3+ in a low-spin (d8)
configuration or the individual Cu2  and O' - spins in an opposing alignment, these estimates also lead
to the conclusion that the conventional approach is more likely because the ionic bonding stabilization
energy Eimic is greater by almost 30 eV. The Verwey rule that higher valence cations tend to seek out
oxygen sites of highest coordination [122] is also based on Madelung energy considerations. A question
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associated with the peroxide model is related to ligand-field conventions - how is the hole assigned to
the anion group? Does it reside mainly on the lowest energy ligands (assuming distortions are present)
or is it evenly distributed among them all?

For these reasons, the working assumption that the hole carriers are present principally in the Cu
sublattice as Cu31 ions will be adopted throughout this treatise. Regardless of which model is closer to
reality, however, the carrier is not totally localized on either ion but treated as an entity belonging to the
molecular chains that form conduits for the activationless ordered transfer called superconduction.

TABLE B-1

(CuO)+ Ionic Stabilization Energies

(CuO)+ Options IP + EAa Eln b  Eionicc

(eV) (eV) (eV)

(Cu3+-O2-) +  36.8-3.8 = 33 -63.8 -30.8

(Cu2 -01-)+  20.3-1.4 = 18.9 -21.3 -2.4

a IP = Cation ionization potential

EA = Anion electron affinity

b Elan= Mqcuqoxe21a, where a - 1.90 A, the CuO bond length, and M 1.5

c Eonic = IP+ EA + Elatt
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APPENDIX C

THE FOUR-BODY (Cu 2+O2- ) - (CU 2+O2- ) LINEAR MOLECULE

An extension of the MO model in Appendices A and B may now be applied to the superexchange
case of Cu 2t-O 2 -- Cu 2 +. Because the carrier would, of necessity, occupy the highest energy d,2_y2 orbital
in a d9 tetragonal complex, the approximations that follow focus on this state. As shown in the abbre-
viated MO diagram of Figure B-4, the antibonding state (0a = 0.24 XL - 0.99 XM) becomes the transfer

orbital and represents the starting point for the calculation. For the three-body problem, the usual
approach is to set up a 3 X 3 matrix for Xm, XL, and y ', where XM' represents the second Cu2t ion, and
redo the analysis in Appendix A. Apart from the obvious complexity introduced by the cubic equation

of the secular determinant, there is also the difficulty that the XM and XM' states are at different polaron

Coulomb energies and that this energy difference must be featured in the result. In reality, the second

CuO molecule is an approximation to the (CuO)Y ion raised to a higher energy (EM'- EM) as a result of
the field from the (LaSr)- polaron sources (see Figure 3).

To accommodate these objectives the results of the self-consistent MO calculations in Appendices
A and B are presumed upon, and instead a four-body linear chain consisting of two consecutive CuO
molecules is considered (see Figure C-I). With this approach, a resulting 4 X 4 matrix includes bonding
and antibonding states of both molecules with starting functions 4a 0 0 , and and matrix elements

J (01Ii0 reading as

4). a I Ob ¢bl

0 A 4 - X b - ksa 0 0

0,' b- A+'- X 0 0

0b 0 0 A X bb- Xsb

b 0 0 bb- Asb A'- X (C-1)

where
43

Sa = (o I oo')

S21 C2 1'(XL IXL')- C2 IC22'(XL IXM) C22C2 '(XM IL') + C22C22'(XM I X0 )

s,= (Ob,1,')

c I '( L XL ) +ICi ICI 2'(XLIXM') + C12C I 1'(XMiXL' ) + C1 2CI2'(X M iXM')

bh = €a I HOa') = (A+ + A+)s
and d = (O , I H IO,') = (A_ + A_')sb 

(C-2)

43 The usual nondegenerate approach for estimating transfer integrals results in a product [bML][bL,]I, which

leads to a squaring of the direct metal-ligand transfer integral. In terms of the nomenclature used here,

b - B2 (see, for example, Goodenough, Magnetism and the Chemical Bond, pp. 165-185).
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145391.77

XL X XL

Figure C-1. CuO-CuO two-molecule chain.

The above determinant conveniently breaks up into a pair of 2 X 2 matrices that directly follow the

solution outlined in Appendix A. Only the solutions of the antibonding matrix (where it is assumed that
the carrier resides) is the concern because the two resulting quadratic equations represent the perturba-
tions of the original antibonding and bonding states, respectively.

(A + A+')(I-2s0
2) ± [(A+ - A+') 2(1- Sa2) + ba2 I(/2

2(1- S 2)

After substituting X± back into the secular equation, the corresponding eigenfunctions of the perturbation
become

'p. = Xa(k a + k12

W+ = Yo(k 2 1 *a + k22 4a') , (C-4)

where the kij weighting coefficients are similar in structure to Equation (A-8),

=l (142) !+2
I [! + Sa2 + G12

2 (l + 5sa2) + 2G1 2sa(l+ Sa2) 4(l+Gi 2
2)]

I I 11(2
k12 = (1/2) 1- 4[l + Sa2 + G 12

2 (l + 5sa2) + 2Gl2Sa(l+ Sa 2)4(I+GI2
2 )]

,1 = (1/12) 
12

k[! + Sa2 + G1 2
2(l + 5Sa2 ) - 2Gi 2Sa(i+ Sa2 ) '(l+Gi 2

2 )]

!1/2
km= -(1/2)I i+j (C-6)

=4 [1 4+ Sa2 + G1 2
2(1 + 5Sa2) - 2Gi 2sa(i+ s 2)4(i+G1 2

2 )]

140



The normalization constants follow as X. = (I + 2kttk 2Sa)" 2 , Ya = (1 + 2 k2 lk22Sa )- 1 )2 , and G, 2 =

ba/AE12 + sa with the polaron Coulomb energy AE12 = EM' - EM - A+' - A+. Because sa << 1, it may

be assumed that G, 2 - ba/AE12. Upon inspecting Figure C-I, Equation (C-2) for the magnitude of the
orbital overlap parameter of the antibonding states reduces to sa = C21C22' (xL IxM') - 0.24 X 0.99
S = 0.024, for S = 0. 1.

For A+' + A+ =- 28 eV, Equation (C-2) then yields ba - 0.67 eV, which has a magnitude about
50% greater than the 0.43 eV value determined from the Ndel temperature of CuO that was used in the
various covalent transfer computations throughout this report. This discrepancy should be considered sur-
prisingly small when the assumptions implicit in this one-dimensional approximation are taken into account.

If it is now assumed that Q2 >> I, with sa << 1, the coefficients of the lower energy parts of
Equation (C-6) reduce to

I= (I'2) ! + , (C-7)4(1 + G12 2)

= (1/42) 1 - (C-8)

The normalization factors A and B also simplify through

1 1/2

2kiiki2sa I s" = G_2 / * ! +GI2 2 )  (C-9)
(I + G+2 2)G

for G12 2 >> 1. (Note that although G, 2 is defined as the negative ratio ba/AE 12, with ba < 0 and AEI2
> 0, in these relations it emerges from under a square-root sign, for which the positive solution has always
been chosen to fit the physical meaning.) It follows, therefore, that Y - X - I + sa - i.

The MO functions of Equation (C-4) may be expressed in terms of the basic four initial wavefunctions,
by substituting Equation (B-5) according to

V_ - 0.2 4 (k IXL + kI 2 XL') - 0.99 (k I XM + kI2XM')
V+ - 0.97 (k2 IXL - k 22XL') + 0.15 (k21 M- k22XM') (C-10)

If the lower energy solution is chosen as the CET function, the relative participation of XM and XM' in
the four-body MO function '_ is dependent on the respective magnitudes of k1I and k12.

In Dionne [I], a transfer efficiency Ti was introduced but assumed to be unity. This approximation
may now be refined by relating the transfer efficiency to the probability of a carrier occupying the XM'
state of a metal ion involved in the covalent transfer. The transfer efficiency between sites M and M'
is defined T112 < 1, because the occupation probability of XM' is k122. In effect, T112 accounts for the
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reduction from the mean carrier density (equivalent to the case of uniform density, where b >> EhOP)

between these two sites. For two adjacent sites, this ideal situation produces a maximum value of k 2
2 =

0.5, and the corresponding transfer efficiency then becomes

T112 = k12
2/0.5 1 - IG2 (C-i l)
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APPENDIX D

OXYGEN-COORDINATION INFLUENCE ON EHOP

In Section 3.2 the origin of the electrostatic/elastic (nonmagnetic) contribution to the activation energy
was described in terms of the polaron trap energy E., - (U12 )hvD, where the coupling constant a is related
to the static and optical dielectric constants and tends to be smaller for covalent materials. Some type
of isotope effect might be expected if this elastic trapping energy were the only contribution to Eh p

because the Debye frequency vD is dependent on M- T2. As pointed out in Section 8.5, the isotope effect
has been largely absent in the high-T cuprate compositions, particularly where T, approaches or exceeds
100 K. In addition, the values of Ehop determined by theoretical fits to T, data for the compounds listed
in Table 7 indicate not only a direct relation to T., but also an apparent dependence on the oxygen
coordinations at the Cu sites of the particular lattices, i.e., 2.5 meV for 06, 4 meV for 05, and probably
> 4 meV for 04. This result logically raises the possibility of an oxygen-coordination influence on Eei
through an enhancement of either at or vD by altering the dielectric constants or the normal vibronic modes.

Another and less obvious consideration, however, could be the presence of a third EhOP component
in the form of a crystal-field stabilization energy difference E,, between the Cu2+ and Cu3+ ions. From
standard crystal-field considerations, the stabilization energy of transition-metal ions in octahedral-based
sites increases with the valence charge of the cation, and also with the difference between the relative
electron populations of the t2 and eg orbital states. Based on these factors, Cu3+ (d) would have greater
crystal-field stability than Cul + (49). Consequently, if the net crystal-field stabilizations of the Cu3+ ions
relative to the Cu2+ ions in undistorted octahedral sites are sufficient to tend to offset the Madelung
destabilization caused by the creation of the (LaSr)--(Cu3+02-) polarons, the effect of crystal-field
distortions may be discussed in terms of the model shown in Figure D-I.

With 0 h symmetry, the orbital states are separated by the semiempirical energy parameter 10 Dq
into a lower triplet t2, consisting of d,, d,, and d., and an upper doublet e. containing d2_y2 and d.2.
As the crystal field distorts along the c axis (z direction), d 2y2 and dy would be unaffected to first order,
but the remaining orbitals with z-directed lobe components would be stabilized accordingly in proportion
to the increase in tetragonal component, with d.2 eventually becoming the ground state as the symmetry
descends to square-planar with an 04 coordination. For the problem at hand, the t2 , group is fully oc-
cupied, with the Cu3+ low-spin stabilization A occurring initially in the d.2 orbital for moderate D4h
symmetry; for the pyramidal C4, case, the stabilization increases further and finally reaches a limit of
A = 10 Dq after the crossover of the dj2 and dy levels on the way to a square planar C2. symmetry.

As the splitting A increases beyond the point where low-spin stabilization is favored (- 0.2 eV),
i.e., where A exceeds the Hund rule spin polarization energy EHund, Cu3+ stabilization may result in a
small Ecf component to Ehop that increases monotonically with A, according to

Eop-= Eel + Eef ,

= (o1/2)hvD + [(n3+A3+ - n2 A2+)R - EHud] , (D-1)
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Figure D-1. Growth of e 9 doublet splitting as the tetragonal crystal field component increases through D4. -* C4 , - "

C2. to provide stabilization for the d'M low-spin state.

where A3+ and A2+ are the respective tetragonal splitting energies for Cu3+ and Cu2+; n3+ and n2. are the

corresponding numbers of net stabilized d electrons; and R (< 1) is a semiempirical reduction factor that

accounts for the lattice compensation adjustments to soften the effect of this crystal-field energy imbal-

ance between the Cu3+ and Cu2  ions. For the present case, A,+12 + - 3/2, n3+ = 2 (low-spin case),

n2+ = 1, so that Equation (D-l) may be simplified to

= (&/ 2 )hvD + [2A2 ,2 - EHu.d] (D-2)

R must be considerably smaller than unity for Ecf to fall in this range because EheP for the magnetically

frustrated case is on the order of a few millielectron volts.

A final comment on the stabilization of the low-spin state concerns the occurrence of a lattice

distortion that accompanies the reduction in ionic radius as the spin pairing takes place. In the Cu

perovskites, a descent from tetragonal to orthorhombic symmetry has been reported in compounds that

reach a polaron density sufficient to support a superconduction state. Although this small crystallo-

graphic phase change may be assigned to other causes, such as static Jahn-Teller effects, it is not

unreasonable to consider that a Cu condensation from high spin (S = 1) to low spin (S = 0) may be the

actual source.
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APPENDIX E

EFFECTIVE AREA OF MAGNETIC FIELD AND SUPERCURRENT

For a superconductor of rectangular dimensions d, and d2 as shown in Figure E- 1, an area of magnetic
field and current penetration may be calculated by integrating exp(-xTAL) and exp(-y/XL) distribution
functions independently for the x and y directions, respectively:

d2d, =2d2 Jd'/ exp(-x/ XL)dX = 2Ld2 [l -exp(dl/2XL)]

Ifd 2d/2 2p(E-l)

14M-391

t c,

d• d 1'

Figure E-1. Effective flux penetration regions for a rectangular cross-section model.

An interior area that is void of current may be defined as (d, - dl')(d2 - d2') because d,' and d2'

are equivalent to penetration depths of a square (rather than exponential) function. As a consequence,
the effective area of penetration becomes

Aef = djd 2 - (d, - d'Xd2 -d2 ')

= 2 XL[dI(l - exp(-dP2 L) + d2 (l - exp(-dli 2 )L)

- 2XL(I - exp(-dl/2XL)(l - exp(-d 2i
2 .L)] (E-2)

It is important to recognize two points related to Equation (E-2). First, depending on the relative

magnitudes of XL and dd 2, the value of ic determined from experiment by dividing the measured total

current by the nominal area is an apparent value that is smaller than the true current density. Second,
because the ic error is greatest at T = 0 K. where XL is a minimum, an uncorrected curve of ic(T)/i(O)
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versus T will track higher than the true curve, with the greatest error in the regime where T -- T,. It
is also important to remember that by definition ic is the maximum value of current density at the surface,
according to Equation (2).

Three limiting approximations to Equation (E-2) are worth deriving:

I. di, d2 >> 2 X.L (bulk specimen case),

Aeff , 2.XL(dI + d2 - 2 ,XL) 2 XL(dI + d2) , (E-3)
and

AefflA - 2 JL(IIdI + li/d2) , (E-4)

and also

I - AeffIA - I - 2XL,(I/d + I/d2 ) (E-5)

2. d i , d2 _< 2XL (- fine wire case), with exponential series truncated after the second-order terms,

Aeff = 2 .L[d(d 2/2X.L - (l/2)d2
2/4.L2) + d2(dt/2XL - (l/2)d 2/4x.L2)

- 2),L(d2/2)L - (l/2)d2
2 /4;LL2)(d,/2.L- (I/2)d, 2/4XL2 )]

djd 2 - (1/4) d,2d2
2/4X.L2  (E-6)

and

Aeff /A - I - (1/4) djd2/4.L2  
, (E-7)

and also
1 - Aff/A - (1/4) dld2/4XL2  (E-8)

3. di : 2 XL, d2 >> 2XL (thin-film case),

Aeff = 2 )L[d, + d2(dI/2XL- (I/2)d 2/4XL2)

- 2)L(di/ L - (1/2)d124XL2)]

M dtd2 -d 2d2M)L+d/2d 2 , (E-9)

and
ACWA - I - d,/8XL , (E-10)

and also

tI- Aeff/A - dj/8XL  (E-! )
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APPENDIX F

THE LOW-SPIN STATES OF Ni CATIONS

As listed in Table 5, the dg- d7 pair can provide the S = 0, 1/2 combination required for covalent
transfer if both ions are in a low-spin configuration. Such a possioility may be a reality under conditions
created by the tetragonal/orthorhombic crystal-field environments of the 0 6 -coordinated Ni 3+(2+) ions in
La3+2_xSr2+(Ni 2+,_.Ni3+.)O4. In some measurements of diamagnetism [37], indications of superconduction
transition were reported at temperatures as high as 70 K in carefully prepared single crystals.

Before the earlier analysis [551 of this system is described, it is important to review previous work
with the Li-diluted monoxide NiO, i.e., Li'+xNi2+1 _Ni 3+pO. In the work of Goodenough et al. [36],
ferrimagnetic behavior was observed for values of x < 0.3, resulting at least in part from the Ni 3+ ions
in low-spin (S = 1/2) states. In addition to reducing the magnetic moment of the polaron, a low-spin d7

in an 06 coordination introduces two important features:

" It sets up the possibility of orbital transfer through a-bonding orbitals by leaving only one
electron in the eg levels.

" It creates a static Jahn-Teller effect in an octahedral site, similar to Cu2+ (dg).

Because the d8 occupation can also violate Hund's rule in a planar or strongly tetragonal symmetry, the
implications of the cooperative Jahn-Teller effect from Ni3+ ions becomes apparent where an enhanced
tetragonal distortion is large enough to force the low-spin d* configuration similar to Cu3+. In this case,
however, the cubic crystal-field splitt'ig parameter Dq of Ni2+ is proportionately smaller than that of
Cu3+ and would, therefore, require a larger elastic distortion to split sufficiently the two e states, as shown
in Figure F-1. Nonetheless, the scenario of dual low-spin configurations in the Ni 2 +) transfer pair
remains a distinct possibility.

For the orbital occupancy indicated in Figure 62, the lower dz2 level would be filled for d (S = 0)
and half-filled for d7 (S = 1/2). Unlike the Cu2+ (' + ) or Cu 2+ (3 ) cases, the d2_y2 orbital is not occuried;
the dz2 orbital, however, does interact covalently with the ppa and pya ligand orbitals (with a transfer
integral b estimated as 1/3 that of the d2_y2 orbital case in the x or y directions, resulting from the donut
ring waist of the orbital [26]) and could supply the covalent stabilization necessary for superconduction
transfer. The transfer integral along the z direction would be 4/3 that of the d2_y2 orbital in the x or y
directions, but could not play a role in the tetragonal perovskite lattice because there are no Ni-O-Ni
linkages along the c axis. Further indication that b is smaller may be inferred from the fact that con-
densation effects were not seen until x > 0.2, meaning that x, would be about five times greater than that
of the Cu case.

In Figure F-2, the data of Springthorpe et al. [28] are presented to illustrate the possible presence
of low-spin Ni2+ in the LilxNi 2

1_2xNi3'1 O. As explained in Section 3, S = 0 ions would be detected
by a decrease in the activation energy E.., caused by the breakdown of exchange ordering as reflected
in Equations (16) and (17). If it is assumed that all the Ni2  is high spin (S = 1) at higher temperatures,
where only dynamic Jahn-Teller activity cause localized vibronic lattice perturbations and that a gradual
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transition to low-spin Ni2+ occurs as those effects become static and cooperative, a temperature-depen-
dent two-phase resistivity model employing a Boltzmann exponential function may be constructed ac-
cording to

p = I/O" = [Ne(JL) - I INeALAS + 0I-f)91,1 I

or
p = C(kT){ (I-x)lx)Lf exp(-E bwhl/kT) + (I-J)exp(-Eh,/s/k7)] )-', (F-1)

14=31-10

E Ni N. CU3

0, 4d2 2

-V

2g

SPITING INDUCED BY
CUBIC TETRAGONAL + .JT EFFECT CUBIC LOCAL d7 JIT EFFECT

. 1/2 S-1 S-0

NOTE: q (3.) =(3/2)Dq(2+)

Figure F-I. Ground state crystal-field orbital occupancy diagrams for d7 and dx spin .states.

with N = xN. The cell volume V - a3 and the diffusion length d is approximated by the distance of the
double jump (2a for the linear chain case) required to preserve antiparailel spin alignments, so that C
reduces to a/4e2vhop. The respective high- and low-spin mobilities are p and P~s Ehp and EhoIs the
corresponding activation energies, and the probability of high-spin occupancy is expressed semiempirically
by f = exp(--/kT), with £ representing an activation energy parameter that determines the partition be-
tween the two spin states.

To test this model, computed curves are fitted to the measured data of Figure F-2, with a = 4 A,
Vp= 5.2 X 1012 s-t and Ep = 0.009 eV. Although the partition function f is largely empirical, it

does represent the physical tendency for the S = 0 state to occur. As a result, it is not surprising that
the parameter £ is seen to increase with polaron concentration according to the relation e - (4 X 10 -7)
exp(56 4 x) eV. At higher temperatures, the decrease in £ from 0.28 to 0.16 eV as x increases from
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0.002 to 0.032 may be fitted mathematically with the function Eho & = 0.33exp(4 4x). The sharper knee
of the theoretical curve reflects the idealization of the (ji) approximation in Equation (F- 1). For the high-
temperature regime, spin canting from Lil+-induced exchange isolation [29] could explain the activation
energy decrease. Physical interpretation of the low-temperature effects, however, requires examination
of the Ni cation magnetic states.

12

10

8 , , .... 0.016 -

6

4 E f r,

-- eV eV (75 K)

20.002 0.28 0.009 10-16 10-14

0.016 0.20 0.009 10- 14 10- 12

0 0.032 0.16 0.009 1- 12 o- 10

-2

-4 I I
0 0.01 0.02 0.03 0.04 0.05

ln'(K-1 )

Figure F-2. Empirical fit of theory to data of Springthorpe et aL [281, iruicating dual activation energies of Li,.Ni,. xO
system.

In the basically cubic NiO system, the occurrence of a tetragonal distortion large enough to create

low-spin dO ions is entirely dependent on the Jahn-Teller effect of the neighboring Ni3+ ions. For this

reason the fraction of S = 0 ions is expected to be very small and to cluster about the isolated d7 polarons
of S = 1/2 [see Figure F-3(a)]. In the configuration shown in Figure F-3(b), the Ni3+ polaron is "exchange
isolated" by the zero-spin neighbors in a manner similar to that of Co2+ in Ti4+-diluted LiFe5O8 [291 and
would transfer as a cluster that moves in double steps to preserve the integrity of the magnetic sublattices,

as explained in Section 3. In the tetragonal perovskite, however, evidence of low-spin d8 configurations

embodied in Cu3+ ions, even without the presence of Jahn-Teller Cu2  ions, has been reported [24,34].

The possibility of covalent transfer for the Ni3+ 2 ) pair is therefore directly dependent on the density of

Ni 3 ions and the fraction of Ni2  ions induced into S = 0 states by the host site tetragonal symmetry,

enhanced by the Jahn-Teller effect of the neighboring Ni3  ions.44

44 Further evidence of low-spin Ni3+ and its attendant local distortions is offered by Goodenough et al.

[361 in a footnote relating the findings of Bongers [271 with NaNiO 2 and (Lio.9Nio.o)NiO 2 .
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LATTICE S I
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(b)

Figure F-3. Effects of Jahn-Teller distortion of Ni3 + (low spin) octahedral complex: (a) inducement of S = 0 states
on Ni2 + neighbors, and (b) magnetic frustration surrounding the low-spin Ni2+(3+) grouping.

It should also be pointed out that interesting twists appear with this system. There are mixed
magnetic exchange couplings and a less defined source of Eh P because Nip " has SP = 1/2, and the Ni2+

lattice ions are a combination of SL = I and 0. In addition, with p-type polarons and the zero spin residing
on the lattice ions, this system represents a case that is different from those in Table 5.
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APPENDIX G

EFFECTIVE DIELECTRIC CONSTANT OF Sn

Another worthwhile excercise is to compare how the BCS and CET models relate the condensation
energy to the thermodynamic critical field at T = 0. For the BCS theory [123],

AG(0) = H,.(O) 2/8n = (1/2) N(0)A(0) 2  (G-l)

To evaluate H.(O), therefore, A(0) may be determined experimentally, but N(0) is part of the coupling
constant [see Equation (106)] for which there is no convenient measurement approach.

With CET, however, H,.(0) is related directly to XL(O) through nse(0). From Equations (62) and
(70),

H(0)2/8n = (e2V/4aK) nse(0)2

= (e2 V/4aK)(mc 2/4Xe 2 ) X (O)- 2  (G-2)

The key parameter in Equation (G-2) is the electron screening or effective dielectric constant, which may
now be expressed as

K = (I/87) (mc4 a/e)2 HC(0)-2XL(0)-4 , (G-3)

for V = a3. From this relation the effective dielectric constant for Sn is calculated as K = 5 X 106, for
H.(O) = 305 Oe [124], and XL(O) = 360 A [125], and lattice parameter a = 2.7 A.

Another measurable parameter from which K may be estimated is the ratio K = XL(0)/0(0), ex-
pressed in Equation (98). After rearrangement and simplification,

K = (5.18 X 109)2 (a/K) 2 
, (G-4)

which yields K - 8 X 105 for K = 0.156 (based on the reported value for Sn [125] of . (0) = 2300 A),
in qualitative agreement with the K value found from Equation (G-3).45

These results suggest that although electric fields in metals are screened, there are local internal
contributions that propel current. This conclusion is consistent with the higher carrier velocities charac-
teristic of the high-Tc oxides, [through Equation (82) vs - K"112] because lower K values mean higher
internal fields.

45 The value of K determined from Equation (G-3) is based on the assumption of a planar lattice (see
footnote 27). Although the Sn lattice is not cubic, it is reasonable to expect that this K estimate should
be smaller and, therefore, in closer agreement with the estimate determined from Equation (G-4).
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